K-OV: Revision history

Jump to navigation Jump to search

Diff selection: Mark the radio buttons of the revisions to compare and hit enter or the button at the bottom.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.

15 February 2023

  • curprev 10:2710:27, 15 February 2023Admin talk contribs 2,041 bytes +2,041 Created page with "{{DISPLAYTITLE:k-OV (Orthogonal Vectors)}} == Description == Given $k$ sets of $d$-dimensional vectors $A_1, A_2, \ldots, A_k$, each of size $n$, does there exist $a_1 \in A_1, a_2 \in A_2, \ldots, a_k \in A_k$ such that $a_1 * a_2 * \ldots * a_k = 0$? == Related Problems == Subproblem: OV, 3-OV Related: 3-OV, Unbalanced OV == Parameters == <pre>$n$: number of vectors per set $k$: number of sets $d$: dimension of each vector; $d = omega(log(n))$..."