Weighted Set-Covering: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 27: Line 27:


| [[Chvatal greedy heuristic (Weighted Set-Covering The Set-Covering Problem)|Chvatal greedy heuristic]] || 1979 || $O(dn^{2})$ || $O(dm)$ || ln n - lnln n + \Theta(1) || Deterministic || [https://www-jstor-org.ezproxy.canberra.edu.au/stable/3689577#metadata_info_tab_contents Time]
| [[Chvatal greedy heuristic (Weighted Set-Covering The Set-Covering Problem)|Chvatal greedy heuristic]] || 1979 || $O(dn^{2})$ || $O(dm)$ || ln n - lnln n + \Theta(1) || Deterministic || [https://www-jstor-org.ezproxy.canberra.edu.au/stable/3689577#metadata_info_tab_contents Time]
|-
| [[Integer linear program Vazirani (Unweighted Set-Covering; Weighted Set-Covering The Set-Covering Problem)|Integer linear program Vazirani]] || 2001 || $O(n^{2})$ || $O(U)$ || \log n || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/chapter/10.1007/978-3-662-04565-7_13 Time]
|-
|-
| [[Greedy Algorithm ( The Set-Covering Problem)|Greedy Algorithm]] || 1996 || $O(n^{3} log n)$ || $O(U)$ || \ln(n) - \ln(\ln(n)) + \Theta(1) || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/10.1145/237814.237991 Time]
| [[Greedy Algorithm ( The Set-Covering Problem)|Greedy Algorithm]] || 1996 || $O(n^{3} log n)$ || $O(U)$ || \ln(n) - \ln(\ln(n)) + \Theta(1) || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/10.1145/237814.237991 Time]

Revision as of 13:05, 15 February 2023

Description

The set-covering problem where each set $s\in S$ is assigned a weight and the goal is to find the minimum weight sub-collection of $S$ that covers the universe.

Related Problems

Subproblem: Unweighted Set-Covering

Parameters

n: number of elements in the universe

m: number of sets in the collection

d: size of the largest set in collection

H(x): the xth Harmonic number

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Chvatal greedy heuristic 1979 $O(dn^{2})$ $O(dm)$ ln n - lnln n + \Theta(1) Deterministic Time
Integer linear program Vazirani 2001 $O(n^{2})$ $O(U)$ \log n Deterministic Time
Greedy Algorithm 1996 $O(n^{3} log n)$ $O(U)$ \ln(n) - \ln(\ln(n)) + \Theta(1) Deterministic Time
Lund & Yannakakis 1994 $O({2}^n)$ Exact Deterministic Time
Feige 1998 $O({2}^n)$ Exact Deterministic Time
Raz & Safra 1997 $O(n^{3} log^{3} n)$ Exact Deterministic Time
Dinur & Steurer 2013 $O(n^{2} log n)$ Exact Deterministic Time
Cardoso; Nuno; Abreu; Rui 2014 $O(n^{2})$ Exact Parallel Time
Brute force 1972 $O(U {2}^n)$ $O(U)$ Exact Deterministic