Counting Solutions: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 20: Line 20:
|-
|-


| [[Naive Algorithm (Counting Solutions; Constructing solutions n-Queens Problem)|Naive Algorithm]] || 1848 || $O(n^n)$ || $O(n)$ || Exact || Deterministic || 
|-
| [[Naive + 1 queen per row restriction (Counting Solutions; Constructing solutions n-Queens Problem)|Naive + 1 queen per row restriction]] || 1850 || $O(n!)$ || $O(n)$ || Exact || Deterministic || 
|-
| [[Dijkstra (Counting Solutions; Constructing solutions n-Queens Problem)|Dijkstra]] || 1972 || $O(n!)$ || $O(n)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/citation.cfm?id=1243380 Time]
|-
| [[Nauck (Counting Solutions; Constructing solutions n-Queens Problem)|Nauck]] || 1850 || $O(n!)$ ||  || Exact || Deterministic || 
|-
| [[Gunther Determinants solution (Counting Solutions; Constructing solutions n-Queens Problem)|Gunther Determinants solution]] || 1874 || $O(n!)$ || $O(n!)$ ? || Exact || Deterministic || 
|-
| [[Rivin, Zabih (Counting Solutions n-Queens Problem)|Rivin, Zabih]] || 1992 || $O({8}^n*poly(n)$) || $O({8}^n*n^{2})$ || Exact || Deterministic || [http://www.cs.cornell.edu/~rdz/Papers/RZ-IPL92.pdf Time & Space]
| [[Rivin, Zabih (Counting Solutions n-Queens Problem)|Rivin, Zabih]] || 1992 || $O({8}^n*poly(n)$) || $O({8}^n*n^{2})$ || Exact || Deterministic || [http://www.cs.cornell.edu/~rdz/Papers/RZ-IPL92.pdf Time & Space]
|-
|-
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:n-Queens Problem - Counting Solutions - Time.png|1000px]]
[[File:n-Queens Problem - Counting Solutions - Time.png|1000px]]


== Space Complexity graph ==  
== Space Complexity Graph ==  


[[File:n-Queens Problem - Counting Solutions - Space.png|1000px]]
[[File:n-Queens Problem - Counting Solutions - Space.png|1000px]]


== Pareto Decades graph ==  
== Pareto Frontier Improvements Graph ==  


[[File:n-Queens Problem - Counting Solutions - Pareto Frontier.png|1000px]]
[[File:n-Queens Problem - Counting Solutions - Pareto Frontier.png|1000px]]

Revision as of 13:05, 15 February 2023

Description

How many ways can one put $n$ queens on an $n \times n$ chessboard so that no two queens attack each other? In other words, how many points can be placed on an $n \times n$ grid so that no two are on the same row, column, or diagonal?

Related Problems

Related: Constructing Solutions, n-Queens Completion

Parameters

n: number of queens, size of chessboard

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Naive Algorithm 1848 $O(n^n)$ $O(n)$ Exact Deterministic
Naive + 1 queen per row restriction 1850 $O(n!)$ $O(n)$ Exact Deterministic
Dijkstra 1972 $O(n!)$ $O(n)$ Exact Deterministic Time
Nauck 1850 $O(n!)$ Exact Deterministic
Gunther Determinants solution 1874 $O(n!)$ $O(n!)$ ? Exact Deterministic
Rivin, Zabih 1992 $O({8}^n*poly(n)$) $O({8}^n*n^{2})$ Exact Deterministic Time & Space

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

Space Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

Pareto Frontier Improvements Graph

Error creating thumbnail: Unable to save thumbnail to destination

References/Citation

https://dl-acm-org.ezproxy.canberra.edu.au/citation.cfm?id=1243380