SAT: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:
== Table of Algorithms ==  
== Table of Algorithms ==  


Currently no algorithms in our database for the given problem.
{| class="wikitable sortable"  style="text-align:center;" width="100%"
 
! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Reference
 
|-
 
| [[Davis-Putnam-Logemann-Loveland Algorithm (DPLL) (CNF-SAT Boolean Satisfiability)|Davis-Putnam-Logemann-Loveland Algorithm (DPLL)]] || 1961 || $O({2}^n)$ || $O(n)$ || Exact || Deterministic || [https://dl.acm.org/doi/10.1145/368273.368557 Time] & [https://en.wikipedia.org/wiki/DPLL_algorithm Space]
|-
| [[Conflict-Driven Clause Learning (CDCL) (CNF-SAT Boolean Satisfiability)|Conflict-Driven Clause Learning (CDCL)]] || 1999 || $O({2}^n)$ ||  || Exact || Deterministic || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/769433 Time]
|-
| [[GSAT (CNF-SAT Boolean Satisfiability)|GSAT]] || 1992 || $O(n*mt*mf)$ || $O(n)$ ||  || Randomized || [http://www.cs.cornell.edu/selman/papers/pdf/92.aaai.gsat.pdf Time]
|-
| [[WalkSAT (CNF-SAT Boolean Satisfiability)|WalkSAT]] || 1994 || $O(n*mt*mf)$ || $O(n)$ ||  || Randomized || [https://www.aaai.org/Papers/AAAI/1994/AAAI94-051.pdf Time]
|-
| [[Quantum Adiabatic Algorithm (QAA) (CNF-SAT Boolean Satisfiability)|Quantum Adiabatic Algorithm (QAA)]] || 2001 || $O({2}^n)$ || $O(poly(n)$) ||  || Quantum || [https://arxiv.org/pdf/quant-ph/0001106.pdf Time]
|-
| [[Paturi, Pudlák, Saks, Zane (PPSZ) 2005 (k-SAT Boolean Satisfiability)|Paturi, Pudlák, Saks, Zane (PPSZ)]] || 2005 || O^*({2}^{n-cn/k}) || $O(kn)$ || Exact || Randomized || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.1145/1066100.1066101 Time]
|-
| [[Hertli (Modified PPSZ) (3SAT Boolean Satisfiability)|Hertli (Modified PPSZ)]] || 2014 || $O({1.30704}^n)$ || $O(kn)$ || Exact || Randomized || [https://epubs-siam-org.ezproxy.canberra.edu.au/doi/abs/10.1137/120868177 Time]
|-
| [[Hertli (Modified PPSZ) (4SAT Boolean Satisfiability)|Hertli (Modified PPSZ)]] || 2014 || $O({1.46899}^n)$ || $O(kn)$ || Exact || Randomized || [https://epubs-siam-org.ezproxy.canberra.edu.au/doi/abs/10.1137/120868177 Time]
|-
| [[Shi 2009 (NAE 3SAT Boolean Satisfiability)|Shi]] || 2009 || $O({12}m*t_extract + {2}m*t_discard + {2}n*t_append + (n+{2}m)$*t_merge + (n-{1})*t_amplify) || $O(n)$ tubes or $O({2}^n)$ library strands || Exact || Deterministic || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/abstract/document/5211463 Time] & [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/stamp/stamp.jsp?tp=&arnumber=5211463 Space]
|-
|}

Revision as of 13:05, 15 February 2023

Description

Boolean satisfiability problems involve determining if there is an assignment of variables that satisfies a given boolean formula.

Related Problems

Subproblem: Conjunctive Normal Form SAT, Disjunctive Normal Form SAT

Related: Disjunctive Normal Form SAT, 1-in-3SAT, Monotone 1-in-3SAT, Monotone Not-Exactly-1-in-3SAT, All-Equal-SAT, Not-All-Equal 3-SAT (NAE 3SAT), Monotone Not-All-Equal 3-SAT (Monotone NAE 3SAT), k-SAT, 2SAT, 3SAT, 3SAT-5, 4SAT, Monotone 3SAT, XOR-SAT, Horn SAT, Dual-Horn SAT, Renamable Horn, MaxSAT

Parameters

n: number of variables

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Davis-Putnam-Logemann-Loveland Algorithm (DPLL) 1961 $O({2}^n)$ $O(n)$ Exact Deterministic Time & Space
Conflict-Driven Clause Learning (CDCL) 1999 $O({2}^n)$ Exact Deterministic Time
GSAT 1992 $O(n*mt*mf)$ $O(n)$ Randomized Time
WalkSAT 1994 $O(n*mt*mf)$ $O(n)$ Randomized Time
Quantum Adiabatic Algorithm (QAA) 2001 $O({2}^n)$ $O(poly(n)$) Quantum Time
Paturi, Pudlák, Saks, Zane (PPSZ) 2005 O^*({2}^{n-cn/k}) $O(kn)$ Exact Randomized Time
Hertli (Modified PPSZ) 2014 $O({1.30704}^n)$ $O(kn)$ Exact Randomized Time
Hertli (Modified PPSZ) 2014 $O({1.46899}^n)$ $O(kn)$ Exact Randomized Time
Shi 2009 $O({12}m*t_extract + {2}m*t_discard + {2}n*t_append + (n+{2}m)$*t_merge + (n-{1})*t_amplify) $O(n)$ tubes or $O({2}^n)$ library strands Exact Deterministic Time & Space