Multiplication: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
== Parameters ==  
== Parameters ==  


n: length of one of the integers, in bits
$n$: length of one of the integers, in bits


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 16: Line 16:
|-
|-


| [[Karatsuba Algorithm ( Multiplication)|Karatsuba Algorithm]] || 1962 || $O(n^{1.{5}8})$ || $O(n)$ auxiliary || Exact || Deterministic || [http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=26729&option_lang=eng Time]
| [[Karatsuba Algorithm ( Multiplication)|Karatsuba Algorithm]] || 1962 || $O(n^{1.{5}8})$ || $O(n)$ || Exact || Deterministic || [http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=26729&option_lang=eng Time]
|-
|-
| [[Toom-3 ( Multiplication)|Toom-3]] || 1969 || $O(n^{1.{4}6})$ || $O(n)$ auxiliary || Exact || Deterministic || [https://www-ams-org.ezproxy.canberra.edu.au/journals/tran/1969-142-00/S0002-9947-1969-0249212-8/S0002-9947-1969-0249212-8.pdf Time]
| [[Toom-3 ( Multiplication)|Toom-3]] || 1969 || $O(n^{1.{4}6})$ || $O(n)$ || Exact || Deterministic || [https://www-ams-org.ezproxy.canberra.edu.au/journals/tran/1969-142-00/S0002-9947-1969-0249212-8/S0002-9947-1969-0249212-8.pdf Time]
|-
|-
| [[Long Multiplication ( Multiplication)|Long Multiplication]] || 1940 || $O(n^{2})$ || $O(n)$ auxiliary || Exact || Deterministic ||   
| [[Long Multiplication ( Multiplication)|Long Multiplication]] || 1940 || $O(n^{2})$ || $O(n)$ || Exact || Deterministic ||   
|-
|-
| [[Schönhage–Strassen algorithm ( Multiplication)|Schönhage–Strassen algorithm]] || 1971 || $O(n logn loglogn)$ || $O(n)$ auxiliary? || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/article/10.1007/BF02242355 Time]
| [[Schönhage–Strassen algorithm ( Multiplication)|Schönhage–Strassen algorithm]] || 1971 || $O(n \log n \log\log n)$ || $O(n)$ auxiliary? || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/article/10.1007/BF02242355 Time]
|-
|-
| [[Furer's algorithm ( Multiplication)|Furer's algorithm]] || 2007 || $O(nlogn {2}^{O(log*n)$}) || $O(n)$ auxiliary? || Exact || Deterministic || [https://web.archive.org/web/20130425232048/http://www.cse.psu.edu/~furer/Papers/mult.pdf Time]
| [[Furer's algorithm ( Multiplication)|Furer's algorithm]] || 2007 || $O(n \log n {2}^{O(\log*n)})$ || $O(n)$ auxiliary? || Exact || Deterministic || [https://web.archive.org/web/20130425232048/http://www.cse.psu.edu/~furer/Papers/mult.pdf Time]
|-
|-
| [[De ( Multiplication)|De]] || 2008 || $O(nlogn {2}^{O(log*n)$}) || $O(n)$ auxiliary? || Exact || Deterministic || [https://arxiv.org/abs/0801.1416 Time]
| [[De ( Multiplication)|De]] || 2008 || $O(n \log n {2}^{O(\log*n)})$ || $O(n)$ auxiliary? || Exact || Deterministic || [https://arxiv.org/abs/0801.1416 Time]
|-
|-
| [[Harvey; Hoeven ( Multiplication)|Harvey; Hoeven]] || 2019 || $O(nlogn)$ || $O(n)$ auxiliary?? || Exact || Deterministic || [https://hal.archives-ouvertes.fr/hal-02070778 Time]
| [[Harvey; Hoeven ( Multiplication)|Harvey; Hoeven]] || 2019 || $O(n \log n)$ || $O(n)$ auxiliary?? || Exact || Deterministic || [https://hal.archives-ouvertes.fr/hal-02070778 Time]
|-
|-
| [[Harvey; Hoeven; Lecerf ( Multiplication)|Harvey; Hoeven; Lecerf]] || 2015 || $O(nlogn {2}^{({3}log*n)$}) || $O(n)$ auxiliary?? || Exact || Deterministic || [https://arxiv.org/abs/1407.3360 Time]
| [[Harvey; Hoeven; Lecerf ( Multiplication)|Harvey; Hoeven; Lecerf]] || 2015 || $O(n \log n {2}^{({3} \log*n)})$ || $O(n)$ auxiliary?? || Exact || Deterministic || [https://arxiv.org/abs/1407.3360 Time]
|-
|-
| [[Covanov and Thomé ( Multiplication)|Covanov and Thomé]] || 2015 || $O(nlogn {2}^{O(log*n)$}) || $O(n)$ auxiliary?? || Exact || Deterministic || [https://hal.inria.fr/hal-01108166v1/document Time]
| [[Covanov and Thomé ( Multiplication)|Covanov and Thomé]] || 2015 || $O(n \log n {2}^{O(\log*n)})$ || $O(n)$ auxiliary?? || Exact || Deterministic || [https://hal.inria.fr/hal-01108166v1/document Time]
|-
|-
| [[Covanov and Thomé ( Multiplication)|Covanov and Thomé]] || 2016 || $O(nlogn {2}^{({3}log*n)$}) || $O(n)$ auxiliary?? || Exact || Deterministic || [https://arxiv.org/abs/1502.02800 Time]
| [[Covanov and Thomé ( Multiplication)|Covanov and Thomé]] || 2016 || $O(n \log n {2}^{({3} \log*n)})$ || $O(n)$ auxiliary?? || Exact || Deterministic || [https://arxiv.org/abs/1502.02800 Time]
|-
|-
| [[Harvey; Hoeven; Lecerf ( Multiplication)|Harvey; Hoeven; Lecerf]] || 2018 || $O(nlogn {2}^{({2}log*n)$}) || $O(n)$ auxiliary?? || Exact || Deterministic || [https://arxiv.org/abs/1802.07932 Time]
| [[Harvey; Hoeven; Lecerf ( Multiplication)|Harvey; Hoeven; Lecerf]] || 2018 || $O(n \log n {2}^{({2} \log*n)})$ || $O(n)$ auxiliary?? || Exact || Deterministic || [https://arxiv.org/abs/1802.07932 Time]
|-
|-
|}
|}

Revision as of 07:52, 10 April 2023

Description

Multiplication is one of the four elementary mathematical operations of arithmetic; with the others being addition; subtraction and division. Given two $n$-bit integers, compute their product, which should be a $2n$-bit integer.

Parameters

$n$: length of one of the integers, in bits

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Karatsuba Algorithm 1962 $O(n^{1.{5}8})$ $O(n)$ Exact Deterministic Time
Toom-3 1969 $O(n^{1.{4}6})$ $O(n)$ Exact Deterministic Time
Long Multiplication 1940 $O(n^{2})$ $O(n)$ Exact Deterministic
Schönhage–Strassen algorithm 1971 $O(n \log n \log\log n)$ $O(n)$ auxiliary? Exact Deterministic Time
Furer's algorithm 2007 $O(n \log n {2}^{O(\log*n)})$ $O(n)$ auxiliary? Exact Deterministic Time
De 2008 $O(n \log n {2}^{O(\log*n)})$ $O(n)$ auxiliary? Exact Deterministic Time
Harvey; Hoeven 2019 $O(n \log n)$ $O(n)$ auxiliary?? Exact Deterministic Time
Harvey; Hoeven; Lecerf 2015 $O(n \log n {2}^{({3} \log*n)})$ $O(n)$ auxiliary?? Exact Deterministic Time
Covanov and Thomé 2015 $O(n \log n {2}^{O(\log*n)})$ $O(n)$ auxiliary?? Exact Deterministic Time
Covanov and Thomé 2016 $O(n \log n {2}^{({3} \log*n)})$ $O(n)$ auxiliary?? Exact Deterministic Time
Harvey; Hoeven; Lecerf 2018 $O(n \log n {2}^{({2} \log*n)})$ $O(n)$ auxiliary?? Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

Space Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

Time-Space Tradeoff

Error creating thumbnail: Unable to save thumbnail to destination

References/Citation

https://hal.archives-ouvertes.fr/hal-02070778