Non-integer Maximum Flow: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:Non-integer Maximum Flow (Maximum Flow)}} == Description == Maximum flow problems involve finding a feasible flow through a flow network that is maximum. In this variant, the capacities may be non-integers. == Related Problems == Subproblem: Integer Maximum Flow Related: st-Maximum Flow, Unweighted Maximum Flow, Minimum-Cost Flow, All-Pairs Maximum Flow, Maximum Local Edge Connectivity == Parameters == <pre>V: number of ver...")
 
No edit summary
 
(One intermediate revision by the same user not shown)
Line 12: Line 12:
== Parameters ==  
== Parameters ==  


<pre>V: number of vertices
$V$: number of vertices
E: number of edges
 
U: maximum edge capacity</pre>
$E$: number of edges
 
$U$: maximum edge capacity


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 28: Line 30:
| [[Dinitz ( Maximum Flow)|Dinitz]] || 1970 || $O(V^{2}E)$ || $O(E)$ || Exact || Deterministic || [https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1690549 Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
| [[Dinitz ( Maximum Flow)|Dinitz]] || 1970 || $O(V^{2}E)$ || $O(E)$ || Exact || Deterministic || [https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1690549 Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
|-
|-
| [[Edmonds & Karp ( Maximum Flow)|Edmonds & Karp]] || 1972 || $O(E^{2}LogU)$ || $O(E)$ || Exact || Deterministic || [https://web.eecs.umich.edu/~pettie/matching/Edmonds-Karp-network-flow.pdf Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
| [[Edmonds & Karp ( Maximum Flow)|Edmonds & Karp]] || 1972 || $O(E^{2} \log U)$ || $O(E)$ || Exact || Deterministic || [https://web.eecs.umich.edu/~pettie/matching/Edmonds-Karp-network-flow.pdf Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
|-
|-
| [[Karzanov ( Maximum Flow)|Karzanov]] || 1974 || $O(V^{3})$ || $O(V^{2})$ || Exact || Deterministic || [http://alexander-karzanov.net/Publications/maxflow-acyc.pdf Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
| [[Karzanov ( Maximum Flow)|Karzanov]] || 1974 || $O(V^{3})$ || $O(V^{2})$ || Exact || Deterministic || [http://alexander-karzanov.net/Publications/maxflow-acyc.pdf Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
|-
|-
| [[Galil & Naamad ( Maximum Flow)|Galil & Naamad]] || 1980 || $O(VELog^{2}V)$ || $O(E)$ || Exact || Deterministic || [https://core.ac.uk/download/pdf/81946904.pdf Time & Space]
| [[Galil & Naamad ( Maximum Flow)|Galil & Naamad]] || 1980 || $O(VE \log^{2} V)$ || $O(E)$ || Exact || Deterministic || [https://core.ac.uk/download/pdf/81946904.pdf Time & Space]
|-
|-
| [[Dantzig ( Maximum Flow)|Dantzig]] || 1951 || $O(V^{2}EU)$ || $O(VE)$? || Exact || Deterministic ||   
| [[Dantzig ( Maximum Flow)|Dantzig]] || 1951 || $O(V^{2}EU)$ || $O(VE)$? || Exact || Deterministic ||   
|-
|-
| [[Dinitz (with dynamic trees) ( Maximum Flow)|Dinitz (with dynamic trees)]] || 1973 || $O(VELogU)$ || $O(E)$ || Exact || Deterministic || [https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1690549 Time]
| [[Dinitz (with dynamic trees) ( Maximum Flow)|Dinitz (with dynamic trees)]] || 1973 || $O(VE \log U)$ || $O(E)$ || Exact || Deterministic || [https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1690549 Time]
|-
|-
| [[Cherkassky ( Maximum Flow)|Cherkassky]] || 1977 || $O(V^{2}E^{0.5})$ || $O(E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/abs/pii/S037722179600269X Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
| [[Cherkassky ( Maximum Flow)|Cherkassky]] || 1977 || $O(V^{2}E^{0.5})$ || $O(E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/abs/pii/S037722179600269X Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
|-
|-
| [[Sleator & Tarjan ( Maximum Flow)|Sleator & Tarjan]] || 1983 || $O(VELogV)$ || $O(E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0022000083900065 Time]
| [[Sleator & Tarjan ( Maximum Flow)|Sleator & Tarjan]] || 1983 || $O(VE \log V)$ || $O(E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0022000083900065 Time]
|-
|-
| [[Goldberg & Tarjan ( Maximum Flow)|Goldberg & Tarjan]] || 1986 || $O(VELog(V^{2}/E))$ || $O(E)$ || Exact || Deterministic || [https://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/a%20new%20approach.pdf Time]
| [[Goldberg & Tarjan ( Maximum Flow)|Goldberg & Tarjan]] || 1986 || $O(VE \log (V^{2}/E))$ || $O(E)$ || Exact || Deterministic || [https://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/a%20new%20approach.pdf Time]
|-
|-
| [[Ahuja & Orlin ( Maximum Flow)|Ahuja & Orlin]] || 1987 || $O(VE + V^{2}LogU)$ || $O(ELogU)$ || Exact || Deterministic || [https://www.researchgate.net/publication/38008130_A_Fast_and_Simple_Algorithm_for_the_Maximum_Flow_Problem Time]
| [[Ahuja & Orlin ( Maximum Flow)|Ahuja & Orlin]] || 1987 || $O(VE + V^{2} \log U)$ || $O(ELogU)$ || Exact || Deterministic || [https://www.researchgate.net/publication/38008130_A_Fast_and_Simple_Algorithm_for_the_Maximum_Flow_Problem Time]
|-
|-
| [[Ahuja et al. ( Maximum Flow)|Ahuja et al.]] || 1987 || $O(VELog(V(LogU)$^{0.5} / E)) ||  || Exact || Deterministic || [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.5093&rep=rep1&type=pdf Time]
| [[Ahuja et al. ( Maximum Flow)|Ahuja et al.]] || 1987 || $O(VELog(V(LogU)$^{0.5} / E)) ||  || Exact || Deterministic || [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.5093&rep=rep1&type=pdf Time]

Latest revision as of 08:18, 10 April 2023

Description

Maximum flow problems involve finding a feasible flow through a flow network that is maximum. In this variant, the capacities may be non-integers.

Related Problems

Subproblem: Integer Maximum Flow

Related: st-Maximum Flow, Unweighted Maximum Flow, Minimum-Cost Flow, All-Pairs Maximum Flow, Maximum Local Edge Connectivity

Parameters

$V$: number of vertices

$E$: number of edges

$U$: maximum edge capacity

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Ford & Fulkerson 1955 $O(E^{2}U)$ $O(E)$ Exact Deterministic Time & Space
Dinitz 1970 $O(V^{2}E)$ $O(E)$ Exact Deterministic Time & Space
Edmonds & Karp 1972 $O(E^{2} \log U)$ $O(E)$ Exact Deterministic Time & Space
Karzanov 1974 $O(V^{3})$ $O(V^{2})$ Exact Deterministic Time & Space
Galil & Naamad 1980 $O(VE \log^{2} V)$ $O(E)$ Exact Deterministic Time & Space
Dantzig 1951 $O(V^{2}EU)$ $O(VE)$? Exact Deterministic
Dinitz (with dynamic trees) 1973 $O(VE \log U)$ $O(E)$ Exact Deterministic Time
Cherkassky 1977 $O(V^{2}E^{0.5})$ $O(E)$ Exact Deterministic Time & Space
Sleator & Tarjan 1983 $O(VE \log V)$ $O(E)$ Exact Deterministic Time
Goldberg & Tarjan 1986 $O(VE \log (V^{2}/E))$ $O(E)$ Exact Deterministic Time
Ahuja & Orlin 1987 $O(VE + V^{2} \log U)$ $O(ELogU)$ Exact Deterministic Time
Ahuja et al. 1987 $O(VELog(V(LogU)$^{0.5} / E)) Exact Deterministic Time
MKM Algorithm 1978 $O(V^{3})$ $O(E)$ Exact Deterministic Time & Space
Galil 1978 $O(V^({5}/{3})$E^({2}/{3})) $O(E)$ Exact Deterministic Time & Space
Shiloach 1981 $O(V^{3}*log(V)$/p) $O(E)$ Exact Parallel Time
Gabow 1985 $O(VE*logU)$ $O(E)$ Exact Deterministic Time
Lee, Sidford 2014 $O(E*sqrt(V)$*log^{2}(U)*polylog(E, V, log(U)) $O(E)$ Exact Deterministic Time
Madry 2016 $O(E^({10}/{7})$U^({1}/{7})polylog(V, E, log U)) $O(E)$ Exact Deterministic Time
Kathuria, Liu, Sidford 2020 $O(E^({1}+o({1})$)/sqrt(eps)) $O(E)$ or $O(V^{2})$ ? 1+eps Deterministic Time
Kathuria, Liu, Sidford 2020 $O(E^({4}/{3}+o({1})$)U^({1}/{3})) $O(E)$ or $O(V^{2})$ ? Exact Deterministic Time
Brand et al 2021 $O((E+V^{1.5})$log(U)polylog(V, E, log U)) $O(E)$ Exact Randomized Time
Gao, Liu, Peng 2021 $O(E^({3}/{2}-{1}/{328})$*log(U)*polylog(E)) $O(E)$ Exact Deterministic Time
Chen et al 2022 $O(E^({1}+o({1})$)*log(U)) $O(E)$ Exact Deterministic Time