St-Maximum Flow: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 10: | Line 10: | ||
== Parameters == | == Parameters == | ||
V: number of vertices | $V$: number of vertices | ||
E: number of edges | $E$: number of edges | ||
U: maximum edge capacity | $U$: maximum edge capacity | ||
== Table of Algorithms == | == Table of Algorithms == | ||
Line 28: | Line 28: | ||
| [[Dinitz ( Maximum Flow)|Dinitz]] || 1970 || $O(V^{2}E)$ || $O(E)$ || Exact || Deterministic || [https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1690549 Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space] | | [[Dinitz ( Maximum Flow)|Dinitz]] || 1970 || $O(V^{2}E)$ || $O(E)$ || Exact || Deterministic || [https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1690549 Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space] | ||
|- | |- | ||
| [[Edmonds & Karp ( Maximum Flow)|Edmonds & Karp]] || 1972 || $O(E^{2} | | [[Edmonds & Karp ( Maximum Flow)|Edmonds & Karp]] || 1972 || $O(E^{2} \log U)$ || $O(E)$ || Exact || Deterministic || [https://web.eecs.umich.edu/~pettie/matching/Edmonds-Karp-network-flow.pdf Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space] | ||
|- | |- | ||
| [[Karzanov ( Maximum Flow)|Karzanov]] || 1974 || $O(V^{3})$ || $O(V^{2})$ || Exact || Deterministic || [http://alexander-karzanov.net/Publications/maxflow-acyc.pdf Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space] | | [[Karzanov ( Maximum Flow)|Karzanov]] || 1974 || $O(V^{3})$ || $O(V^{2})$ || Exact || Deterministic || [http://alexander-karzanov.net/Publications/maxflow-acyc.pdf Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space] | ||
|- | |- | ||
| [[Galil & Naamad ( Maximum Flow)|Galil & Naamad]] || 1980 || $O( | | [[Galil & Naamad ( Maximum Flow)|Galil & Naamad]] || 1980 || $O(VE \log^{2} V)$ || $O(E)$ || Exact || Deterministic || [https://core.ac.uk/download/pdf/81946904.pdf Time & Space] | ||
|- | |- | ||
| [[Dantzig ( Maximum Flow)|Dantzig]] || 1951 || $O(V^{2}EU)$ || $O(VE)$? || Exact || Deterministic || | | [[Dantzig ( Maximum Flow)|Dantzig]] || 1951 || $O(V^{2}EU)$ || $O(VE)$? || Exact || Deterministic || | ||
|- | |- | ||
| [[Dinitz (with dynamic trees) ( Maximum Flow)|Dinitz (with dynamic trees)]] || 1973 || $O( | | [[Dinitz (with dynamic trees) ( Maximum Flow)|Dinitz (with dynamic trees)]] || 1973 || $O(VE \log U)$ || $O(E)$ || Exact || Deterministic || [https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1690549 Time] | ||
|- | |- | ||
| [[Cherkassky ( Maximum Flow)|Cherkassky]] || 1977 || $O(V^{2}E^{0.5})$ || $O(E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/abs/pii/S037722179600269X Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space] | | [[Cherkassky ( Maximum Flow)|Cherkassky]] || 1977 || $O(V^{2}E^{0.5})$ || $O(E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/abs/pii/S037722179600269X Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space] | ||
|- | |- | ||
| [[Sleator & Tarjan ( Maximum Flow)|Sleator & Tarjan]] || 1983 || $O( | | [[Sleator & Tarjan ( Maximum Flow)|Sleator & Tarjan]] || 1983 || $O(VE \log V)$ || $O(E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0022000083900065 Time] | ||
|- | |- | ||
| [[Goldberg & Tarjan ( Maximum Flow)|Goldberg & Tarjan]] || 1986 || $O( | | [[Goldberg & Tarjan ( Maximum Flow)|Goldberg & Tarjan]] || 1986 || $O(VE \log (V^{2}/E))$ || $O(E)$ || Exact || Deterministic || [https://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/a%20new%20approach.pdf Time] | ||
|- | |- | ||
| [[Ahuja & Orlin ( Maximum Flow)|Ahuja & Orlin]] || 1987 || $O(VE + V^{2} | | [[Ahuja & Orlin ( Maximum Flow)|Ahuja & Orlin]] || 1987 || $O(VE + V^{2} \log U)$ || $O(ELogU)$ || Exact || Deterministic || [https://www.researchgate.net/publication/38008130_A_Fast_and_Simple_Algorithm_for_the_Maximum_Flow_Problem Time] | ||
|- | |- | ||
| [[Cheriyan & Hagerup (st-Maximum Flow Maximum Flow)|Cheriyan & Hagerup]] || 1989 || $O(VE | | [[Cheriyan & Hagerup (st-Maximum Flow Maximum Flow)|Cheriyan & Hagerup]] || 1989 || $O(VE \log V)$ || $O(V + E)$ || Exact || Randomized || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/63465 Time] | ||
|- | |- | ||
| [[Cheriyan et al. (st-Maximum Flow Maximum Flow)|Cheriyan et al.]] || 1990 || $O(V^{3} / | | [[Cheriyan et al. (st-Maximum Flow Maximum Flow)|Cheriyan et al.]] || 1990 || $O(V^{3} / \log V)$ || $O(V + E)$ || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/chapter/10.1007/BFb0032035 Time] | ||
|- | |- | ||
| [[Alon (st-Maximum Flow Maximum Flow)|Alon]] || 1990 || $O(VE + V^ | | [[Alon (st-Maximum Flow Maximum Flow)|Alon]] || 1990 || $O(VE + V^{2.{6}6} \log V)$ || $O(V + E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/002001909090024R Time] | ||
|- | |- | ||
| [[King et al. (KRT) (st-Maximum Flow Maximum Flow)|King et al. (KRT)]] || 1992 || $O(VE + V^ | | [[King et al. (KRT) (st-Maximum Flow Maximum Flow)|King et al. (KRT)]] || 1992 || $O(VE + V^{2+\epsilon})$ || $O(V + E)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/citation.cfm?id=139438 Time] | ||
|- | |- | ||
| [[Phillips & Westbrook (st-Maximum Flow Maximum Flow)|Phillips & Westbrook]] || 1993 || $O(VE( | | [[Phillips & Westbrook (st-Maximum Flow Maximum Flow)|Phillips & Westbrook]] || 1993 || $O(VE(\log(V;V/E)) + V^{2}(\log V)^{2} )$ || $O(V + E)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/citation.cfm?id=167201 Time] | ||
|- | |- | ||
| [[James B Orlin's + KRT (King; Rao; Tarjan)'s algorithm (st-Maximum Flow Maximum Flow)|James B Orlin's + KRT (King; Rao; Tarjan)'s algorithm]] || 2013 || $O(VE)$ || $O(V + E)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/citation.cfm?id=2488705 Time] | | [[James B Orlin's + KRT (King; Rao; Tarjan)'s algorithm (st-Maximum Flow Maximum Flow)|James B Orlin's + KRT (King; Rao; Tarjan)'s algorithm]] || 2013 || $O(VE)$ || $O(V + E)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/citation.cfm?id=2488705 Time] | ||
Line 87: | Line 87: | ||
[[File:Maximum Flow - st-Maximum Flow - Time.png|1000px]] | [[File:Maximum Flow - st-Maximum Flow - Time.png|1000px]] | ||
== Reductions FROM Problem == | == Reductions FROM Problem == |
Latest revision as of 09:05, 28 April 2023
Description
Find the maximum flow from $s$ to $t$
Related Problems
Related: Integer Maximum Flow, Unweighted Maximum Flow, Non-integer Maximum Flow, Minimum-Cost Flow, All-Pairs Maximum Flow, Maximum Local Edge Connectivity
Parameters
$V$: number of vertices
$E$: number of edges
$U$: maximum edge capacity
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Ford & Fulkerson | 1955 | $O(E^{2}U)$ | $O(E)$ | Exact | Deterministic | Time & Space |
Dinitz | 1970 | $O(V^{2}E)$ | $O(E)$ | Exact | Deterministic | Time & Space |
Edmonds & Karp | 1972 | $O(E^{2} \log U)$ | $O(E)$ | Exact | Deterministic | Time & Space |
Karzanov | 1974 | $O(V^{3})$ | $O(V^{2})$ | Exact | Deterministic | Time & Space |
Galil & Naamad | 1980 | $O(VE \log^{2} V)$ | $O(E)$ | Exact | Deterministic | Time & Space |
Dantzig | 1951 | $O(V^{2}EU)$ | $O(VE)$? | Exact | Deterministic | |
Dinitz (with dynamic trees) | 1973 | $O(VE \log U)$ | $O(E)$ | Exact | Deterministic | Time |
Cherkassky | 1977 | $O(V^{2}E^{0.5})$ | $O(E)$ | Exact | Deterministic | Time & Space |
Sleator & Tarjan | 1983 | $O(VE \log V)$ | $O(E)$ | Exact | Deterministic | Time |
Goldberg & Tarjan | 1986 | $O(VE \log (V^{2}/E))$ | $O(E)$ | Exact | Deterministic | Time |
Ahuja & Orlin | 1987 | $O(VE + V^{2} \log U)$ | $O(ELogU)$ | Exact | Deterministic | Time |
Cheriyan & Hagerup | 1989 | $O(VE \log V)$ | $O(V + E)$ | Exact | Randomized | Time |
Cheriyan et al. | 1990 | $O(V^{3} / \log V)$ | $O(V + E)$ | Exact | Deterministic | Time |
Alon | 1990 | $O(VE + V^{2.{6}6} \log V)$ | $O(V + E)$ | Exact | Deterministic | Time |
King et al. (KRT) | 1992 | $O(VE + V^{2+\epsilon})$ | $O(V + E)$ | Exact | Deterministic | Time |
Phillips & Westbrook | 1993 | $O(VE(\log(V;V/E)) + V^{2}(\log V)^{2} )$ | $O(V + E)$ | Exact | Deterministic | Time |
James B Orlin's + KRT (King; Rao; Tarjan)'s algorithm | 2013 | $O(VE)$ | $O(V + E)$ | Exact | Deterministic | Time |
Ahuja et al. | 1987 | $O(VELog(V(LogU)$^{0.5} / E)) | Exact | Deterministic | Time | |
MKM Algorithm | 1978 | $O(V^{3})$ | $O(E)$ | Exact | Deterministic | Time & Space |
Galil | 1978 | $O(V^({5}/{3})$E^({2}/{3})) | $O(E)$ | Exact | Deterministic | Time & Space |
Shiloach | 1981 | $O(V^{3}*log(V)$/p) | $O(E)$ | Exact | Parallel | Time |
Gabow | 1985 | $O(VE*logU)$ | $O(E)$ | Exact | Deterministic | Time |
Lee, Sidford | 2014 | $O(E*sqrt(V)$*log^{2}(U)*polylog(E, V, log(U)) | $O(E)$ | Exact | Deterministic | Time |
Madry | 2016 | $O(E^({10}/{7})$U^({1}/{7})polylog(V, E, log U)) | $O(E)$ | Exact | Deterministic | Time |
Kathuria, Liu, Sidford | 2020 | $O(E^({1}+o({1})$)/sqrt(eps)) | $O(E)$ or $O(V^{2})$ ? | 1+eps | Deterministic | Time |
Kathuria, Liu, Sidford | 2020 | $O(E^({4}/{3}+o({1})$)U^({1}/{3})) | $O(E)$ or $O(V^{2})$ ? | Exact | Deterministic | Time |
Brand et al | 2021 | $O((E+V^{1.5})$log(U)polylog(V, E, log U)) | $O(E)$ | Exact | Randomized | Time |
Gao, Liu, Peng | 2021 | $O(E^({3}/{2}-{1}/{328})$*log(U)*polylog(E)) | $O(E)$ | Exact | Deterministic | Time |
Chen et al | 2022 | $O(E^({1}+o({1})$)*log(U)) | $O(E)$ | Exact | Deterministic | Time |
Time Complexity Graph
Error creating thumbnail: Unable to save thumbnail to destination
Reductions FROM Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
MAX-CNF-SAT | assume: SETH then: for any fixed constants $\epsilon > {0}$, $c_1,c_2 \in ({0},{1})$, on graphs with $n$ nodes $|S|=\tilde{\Theta}(n^{c_1})$, $|T|=\tilde{\Theta(n^{c_2})}$, $m=O(n)$ edges, and capacaties in $\{1,\cdots,n\}$, target cannot be solved in $O((|S|T|m)^{1-\epsilon})$ |
2018 | https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.1145/3212510 | link |
MAX-CNF-SAT | assume: SETH then: for any fixed $\epsilon > {0}$, in graphs with $n$ nodes, $m=O(n)$ edges, and capacities in $\{1,\cdots,n\}$ target cannot be solved in time $O((n^{2}m)^{1-\epsilon})$ |
2018 | https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.1145/3212510 | link |