St-Maximum Flow: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 10: Line 10:
== Parameters ==  
== Parameters ==  


V: number of vertices
$V$: number of vertices


E: number of edges
$E$: number of edges


U: maximum edge capacity
$U$: maximum edge capacity


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 28: Line 28:
| [[Dinitz ( Maximum Flow)|Dinitz]] || 1970 || $O(V^{2}E)$ || $O(E)$ || Exact || Deterministic || [https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1690549 Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
| [[Dinitz ( Maximum Flow)|Dinitz]] || 1970 || $O(V^{2}E)$ || $O(E)$ || Exact || Deterministic || [https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1690549 Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
|-
|-
| [[Edmonds & Karp ( Maximum Flow)|Edmonds & Karp]] || 1972 || $O(E^{2}LogU)$ || $O(E)$ || Exact || Deterministic || [https://web.eecs.umich.edu/~pettie/matching/Edmonds-Karp-network-flow.pdf Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
| [[Edmonds & Karp ( Maximum Flow)|Edmonds & Karp]] || 1972 || $O(E^{2} \log U)$ || $O(E)$ || Exact || Deterministic || [https://web.eecs.umich.edu/~pettie/matching/Edmonds-Karp-network-flow.pdf Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
|-
|-
| [[Karzanov ( Maximum Flow)|Karzanov]] || 1974 || $O(V^{3})$ || $O(V^{2})$ || Exact || Deterministic || [http://alexander-karzanov.net/Publications/maxflow-acyc.pdf Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
| [[Karzanov ( Maximum Flow)|Karzanov]] || 1974 || $O(V^{3})$ || $O(V^{2})$ || Exact || Deterministic || [http://alexander-karzanov.net/Publications/maxflow-acyc.pdf Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
|-
|-
| [[Galil & Naamad ( Maximum Flow)|Galil & Naamad]] || 1980 || $O(VELog^{2}V)$ || $O(E)$ || Exact || Deterministic || [https://core.ac.uk/download/pdf/81946904.pdf Time & Space]
| [[Galil & Naamad ( Maximum Flow)|Galil & Naamad]] || 1980 || $O(VE \log^{2} V)$ || $O(E)$ || Exact || Deterministic || [https://core.ac.uk/download/pdf/81946904.pdf Time & Space]
|-
|-
| [[Dantzig ( Maximum Flow)|Dantzig]] || 1951 || $O(V^{2}EU)$ || $O(VE)$? || Exact || Deterministic ||   
| [[Dantzig ( Maximum Flow)|Dantzig]] || 1951 || $O(V^{2}EU)$ || $O(VE)$? || Exact || Deterministic ||   
|-
|-
| [[Dinitz (with dynamic trees) ( Maximum Flow)|Dinitz (with dynamic trees)]] || 1973 || $O(VELogU)$ || $O(E)$ || Exact || Deterministic || [https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1690549 Time]
| [[Dinitz (with dynamic trees) ( Maximum Flow)|Dinitz (with dynamic trees)]] || 1973 || $O(VE \log U)$ || $O(E)$ || Exact || Deterministic || [https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1690549 Time]
|-
|-
| [[Cherkassky ( Maximum Flow)|Cherkassky]] || 1977 || $O(V^{2}E^{0.5})$ || $O(E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/abs/pii/S037722179600269X Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
| [[Cherkassky ( Maximum Flow)|Cherkassky]] || 1977 || $O(V^{2}E^{0.5})$ || $O(E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/abs/pii/S037722179600269X Time] & [https://core.ac.uk/download/pdf/81946904.pdf Space]
|-
|-
| [[Sleator & Tarjan ( Maximum Flow)|Sleator & Tarjan]] || 1983 || $O(VELogV)$ || $O(E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0022000083900065 Time]
| [[Sleator & Tarjan ( Maximum Flow)|Sleator & Tarjan]] || 1983 || $O(VE \log V)$ || $O(E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0022000083900065 Time]
|-
|-
| [[Goldberg & Tarjan ( Maximum Flow)|Goldberg & Tarjan]] || 1986 || $O(VELog(V^{2}/E))$ || $O(E)$ || Exact || Deterministic || [https://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/a%20new%20approach.pdf Time]
| [[Goldberg & Tarjan ( Maximum Flow)|Goldberg & Tarjan]] || 1986 || $O(VE \log (V^{2}/E))$ || $O(E)$ || Exact || Deterministic || [https://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/a%20new%20approach.pdf Time]
|-
|-
| [[Ahuja & Orlin ( Maximum Flow)|Ahuja & Orlin]] || 1987 || $O(VE + V^{2}LogU)$ || $O(ELogU)$ || Exact || Deterministic || [https://www.researchgate.net/publication/38008130_A_Fast_and_Simple_Algorithm_for_the_Maximum_Flow_Problem Time]
| [[Ahuja & Orlin ( Maximum Flow)|Ahuja & Orlin]] || 1987 || $O(VE + V^{2} \log U)$ || $O(ELogU)$ || Exact || Deterministic || [https://www.researchgate.net/publication/38008130_A_Fast_and_Simple_Algorithm_for_the_Maximum_Flow_Problem Time]
|-
|-
| [[Cheriyan & Hagerup (st-Maximum Flow Maximum Flow)|Cheriyan & Hagerup]] || 1989 || $O(VE*log(V))$ || $O(V + E)$ || Exact || Randomized || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/63465 Time]
| [[Cheriyan & Hagerup (st-Maximum Flow Maximum Flow)|Cheriyan & Hagerup]] || 1989 || $O(VE \log V)$ || $O(V + E)$ || Exact || Randomized || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/63465 Time]
|-
|-
| [[Cheriyan et al. (st-Maximum Flow Maximum Flow)|Cheriyan et al.]] || 1990 || $O(V^{3} / LogV)$ || $O(V + E)$ || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/chapter/10.1007/BFb0032035 Time]
| [[Cheriyan et al. (st-Maximum Flow Maximum Flow)|Cheriyan et al.]] || 1990 || $O(V^{3} / \log V)$ || $O(V + E)$ || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/chapter/10.1007/BFb0032035 Time]
|-
|-
| [[Alon (st-Maximum Flow Maximum Flow)|Alon]] || 1990 || $O(VE + V^{({2.66})}LogV)$ || $O(V + E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/002001909090024R Time]
| [[Alon (st-Maximum Flow Maximum Flow)|Alon]] || 1990 || $O(VE + V^{2.{6}6} \log V)$ || $O(V + E)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/002001909090024R Time]
|-
|-
| [[King et al. (KRT) (st-Maximum Flow Maximum Flow)|King et al. (KRT)]] || 1992 || $O(VE + V^{({2}+eps)})$ || $O(V + E)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/citation.cfm?id=139438 Time]
| [[King et al. (KRT) (st-Maximum Flow Maximum Flow)|King et al. (KRT)]] || 1992 || $O(VE + V^{2+\epsilon})$ || $O(V + E)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/citation.cfm?id=139438 Time]
|-
|-
| [[Phillips & Westbrook (st-Maximum Flow Maximum Flow)|Phillips & Westbrook]] || 1993 || $O(VE(Log(V;V/E)) + V^{2}(LogV)^{2} )$ || $O(V + E)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/citation.cfm?id=167201 Time]
| [[Phillips & Westbrook (st-Maximum Flow Maximum Flow)|Phillips & Westbrook]] || 1993 || $O(VE(\log(V;V/E)) + V^{2}(\log V)^{2} )$ || $O(V + E)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/citation.cfm?id=167201 Time]
|-
|-
| [[James B Orlin's + KRT (King; Rao; Tarjan)'s algorithm (st-Maximum Flow Maximum Flow)|James B Orlin's + KRT (King; Rao; Tarjan)'s algorithm]] || 2013 || $O(VE)$ || $O(V + E)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/citation.cfm?id=2488705 Time]
| [[James B Orlin's + KRT (King; Rao; Tarjan)'s algorithm (st-Maximum Flow Maximum Flow)|James B Orlin's + KRT (King; Rao; Tarjan)'s algorithm]] || 2013 || $O(VE)$ || $O(V + E)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/citation.cfm?id=2488705 Time]
Line 87: Line 87:


[[File:Maximum Flow - st-Maximum Flow - Time.png|1000px]]
[[File:Maximum Flow - st-Maximum Flow - Time.png|1000px]]
== Space Complexity Graph ==
[[File:Maximum Flow - st-Maximum Flow - Space.png|1000px]]
== Time-Space Tradeoff ==
[[File:Maximum Flow - st-Maximum Flow - Pareto Frontier.png|1000px]]


== Reductions FROM Problem ==  
== Reductions FROM Problem ==  

Latest revision as of 09:05, 28 April 2023

Description

Find the maximum flow from $s$ to $t$

Related Problems

Related: Integer Maximum Flow, Unweighted Maximum Flow, Non-integer Maximum Flow, Minimum-Cost Flow, All-Pairs Maximum Flow, Maximum Local Edge Connectivity

Parameters

$V$: number of vertices

$E$: number of edges

$U$: maximum edge capacity

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Ford & Fulkerson 1955 $O(E^{2}U)$ $O(E)$ Exact Deterministic Time & Space
Dinitz 1970 $O(V^{2}E)$ $O(E)$ Exact Deterministic Time & Space
Edmonds & Karp 1972 $O(E^{2} \log U)$ $O(E)$ Exact Deterministic Time & Space
Karzanov 1974 $O(V^{3})$ $O(V^{2})$ Exact Deterministic Time & Space
Galil & Naamad 1980 $O(VE \log^{2} V)$ $O(E)$ Exact Deterministic Time & Space
Dantzig 1951 $O(V^{2}EU)$ $O(VE)$? Exact Deterministic
Dinitz (with dynamic trees) 1973 $O(VE \log U)$ $O(E)$ Exact Deterministic Time
Cherkassky 1977 $O(V^{2}E^{0.5})$ $O(E)$ Exact Deterministic Time & Space
Sleator & Tarjan 1983 $O(VE \log V)$ $O(E)$ Exact Deterministic Time
Goldberg & Tarjan 1986 $O(VE \log (V^{2}/E))$ $O(E)$ Exact Deterministic Time
Ahuja & Orlin 1987 $O(VE + V^{2} \log U)$ $O(ELogU)$ Exact Deterministic Time
Cheriyan & Hagerup 1989 $O(VE \log V)$ $O(V + E)$ Exact Randomized Time
Cheriyan et al. 1990 $O(V^{3} / \log V)$ $O(V + E)$ Exact Deterministic Time
Alon 1990 $O(VE + V^{2.{6}6} \log V)$ $O(V + E)$ Exact Deterministic Time
King et al. (KRT) 1992 $O(VE + V^{2+\epsilon})$ $O(V + E)$ Exact Deterministic Time
Phillips & Westbrook 1993 $O(VE(\log(V;V/E)) + V^{2}(\log V)^{2} )$ $O(V + E)$ Exact Deterministic Time
James B Orlin's + KRT (King; Rao; Tarjan)'s algorithm 2013 $O(VE)$ $O(V + E)$ Exact Deterministic Time
Ahuja et al. 1987 $O(VELog(V(LogU)$^{0.5} / E)) Exact Deterministic Time
MKM Algorithm 1978 $O(V^{3})$ $O(E)$ Exact Deterministic Time & Space
Galil 1978 $O(V^({5}/{3})$E^({2}/{3})) $O(E)$ Exact Deterministic Time & Space
Shiloach 1981 $O(V^{3}*log(V)$/p) $O(E)$ Exact Parallel Time
Gabow 1985 $O(VE*logU)$ $O(E)$ Exact Deterministic Time
Lee, Sidford 2014 $O(E*sqrt(V)$*log^{2}(U)*polylog(E, V, log(U)) $O(E)$ Exact Deterministic Time
Madry 2016 $O(E^({10}/{7})$U^({1}/{7})polylog(V, E, log U)) $O(E)$ Exact Deterministic Time
Kathuria, Liu, Sidford 2020 $O(E^({1}+o({1})$)/sqrt(eps)) $O(E)$ or $O(V^{2})$ ? 1+eps Deterministic Time
Kathuria, Liu, Sidford 2020 $O(E^({4}/{3}+o({1})$)U^({1}/{3})) $O(E)$ or $O(V^{2})$ ? Exact Deterministic Time
Brand et al 2021 $O((E+V^{1.5})$log(U)polylog(V, E, log U)) $O(E)$ Exact Randomized Time
Gao, Liu, Peng 2021 $O(E^({3}/{2}-{1}/{328})$*log(U)*polylog(E)) $O(E)$ Exact Deterministic Time
Chen et al 2022 $O(E^({1}+o({1})$)*log(U)) $O(E)$ Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

Reductions FROM Problem

Problem Implication Year Citation Reduction
MAX-CNF-SAT assume: SETH
then: for any fixed constants $\epsilon > {0}$, $c_1,c_2 \in ({0},{1})$, on graphs with $n$ nodes $|S|=\tilde{\Theta}(n^{c_1})$, $|T|=\tilde{\Theta(n^{c_2})}$, $m=O(n)$ edges, and capacaties in $\{1,\cdots,n\}$, target cannot be solved in $O((|S|T|m)^{1-\epsilon})$
2018 https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.1145/3212510 link
MAX-CNF-SAT assume: SETH
then: for any fixed $\epsilon > {0}$, in graphs with $n$ nodes, $m=O(n)$ edges, and capacities in $\{1,\cdots,n\}$ target cannot be solved in time $O((n^{2}m)^{1-\epsilon})$
2018 https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.1145/3212510 link