Matrix Multiplication: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 12: Line 12:
== Parameters ==  
== Parameters ==  


<pre>n: dimension of square matrix</pre>
$n$: dimension of square matrix


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 42: Line 42:
| [[Bini's algorithm (Matrix Multiplication Matrix Product)|Bini's algorithm]] || 1979 || $O(n^{2.{779}9})$ || $O(n^{2})$ || $O(n logn)$ error || Deterministic || [https://doi-org.ezproxy.canberra.edu.au/10.1016/0020-0190(79)90113-3 Time]
| [[Bini's algorithm (Matrix Multiplication Matrix Product)|Bini's algorithm]] || 1979 || $O(n^{2.{779}9})$ || $O(n^{2})$ || $O(n logn)$ error || Deterministic || [https://doi-org.ezproxy.canberra.edu.au/10.1016/0020-0190(79)90113-3 Time]
|-
|-
| [[Schonhage's algorithm (Matrix Multiplication Matrix Product)|Schonhage's algorithm]] || 1980 || $O(n^{({3}*log52/log110)}) ~ O(n^{2.{521}8})$ || $O(n^{2})$ || ? || Deterministic || [https://epubs-siam-org.ezproxy.canberra.edu.au/doi/abs/10.1137/0210032 Time]
| [[Schonhage's algorithm (Matrix Multiplication Matrix Product)|Schonhage's algorithm]] || 1980 || $O(n^{({3}*\log {52}/l \og {110})}) ~ O(n^{2.{521}8})$ || $O(n^{2})$ || ? || Deterministic || [https://epubs-siam-org.ezproxy.canberra.edu.au/doi/abs/10.1137/0210032 Time]
|-
| [[Output-Sensitive Quantum BMM (Boolean Matrix Multiplication Matrix Product)|Output-Sensitive Quantum BMM]] || 2018 || O*( \min \{n^{1/3} L^{17/{3}0}, n^{1.5} L^{1/4}\}) ||  || Exact || Quantum || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/3186893, Time]
|-
| [[ (Boolean Matrix Multiplication (Combinatorial) Matrix Product)| ]] || 2018 || $O(n^{3} / log^{2.25} n)$ ||  || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/3186893, Time]
|-
| [[O'Neil 1973 (Boolean Matrix Multiplication Matrix Product)|O'Neil]] || 1973 || $O(n^{3})$ ||  || Exact || Deterministic || [https://core.ac.uk/download/pdf/82467126.pdf Time]
|-
| [[Method of Four Russians (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Method of Four Russians]] || 1970 || $O(n^{3}/(log n)$^{2}) ||  || Exact || Deterministic || [https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=On+economical+construction+of+the+transitive+closure+of+an+oriented+graph.&btnG= Time]
|-
| [[Bansal, Williams (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Bansal, Williams]] || 2009 || $O(n^{3} * (log log n)$^{2} / log^{2.25} n) ||  || Exact || Randomized || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/abstract/document/5438580 Time]
|-
| [[Bansal, Williams (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Bansal, Williams]] || 2009 || $O(n^{3} * (log log n)$^{2} / (w * (log n)^{7}/{6})) ||  || Exact || Randomized || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/abstract/document/5438580 Time]
|-
| [[Chan (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Chan]] || 2015 || $O(n^{3} * (log log n)$^{3} / log^{3} n) ||  || Exact || Deterministic || [https://epubs-siam-org.ezproxy.canberra.edu.au/doi/abs/10.1137/1.9781611973730.16 Time]
|-
| [[Chan (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Chan]] || 2015 || $O(n^{3} * (log w)$^{3} / (w * log^{2} n)) ||  || Exact || Deterministic || [https://epubs-siam-org.ezproxy.canberra.edu.au/doi/abs/10.1137/1.9781611973730.16 Time]
|-
| [[Yu (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Yu]] || 2015 || $O(n^{3}*poly(log log n)$/log^{4} n) ||  || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/S0890540118300099 Time]
|-
|-
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:Matrix Product - Matrix Multiplication - Time.png|1000px]]
[[File:Matrix Product - Matrix Multiplication - Time.png|1000px]]
== Space Complexity graph ==
[[File:Matrix Product - Matrix Multiplication - Space.png|1000px]]
== Pareto Decades graph ==
[[File:Matrix Product - Matrix Multiplication - Pareto Frontier.png|1000px]]


== References/Citation ==  
== References/Citation ==  


https://arxiv.org/pdf/2010.05846.pdf
https://arxiv.org/pdf/2010.05846.pdf

Latest revision as of 09:05, 28 April 2023

Description

Matrix Multiplication or Matrix Product is a binary operation that produces a matrix from two matrices with entries in a field; or; more generally; in a ring or even a semiring.

Related Problems

Subproblem: Boolean Matrix Multiplication, Matrix Product Verification

Related: Boolean Matrix Multiplication (Combinatorial), Matrix Product Verification, Distance Product, $(\min, \leq)$ Product

Parameters

$n$: dimension of square matrix

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Naive algorithm 1940 $O(n^{3})$ $O({1})$ auxiliary Exact Deterministic
Strassen's algorithm 1969 $O(n^{(log7/log2)}) ~ O(n^{2.{80}7})$ $O(n^{2})$ Exact Deterministic Time & Space
Pan's algorithm 1978 $O(n^{(log({143640})/log({70}))}) ~ O(n^{2.{79}5})$ $O(n^{2})$ Exact Deterministic Time
Romani's algorithm 1981 $O(n^{2.{5166}5})$ $O(n^{2})$ Exact Deterministic Time
Coppersmith–Winograd algorithm 1981 $O(n^{2.{49554}8})$ $O(n^{2})$ Exact Deterministic Time
Strassen's algorithm 1986 $O(n^{(log54/log5)}) ~ O(n^{({2.4785})})$ $O(n^{2})$ Exact Deterministic Time
Coppersmith–Winograd algorithm 1990 $O(n^{2.{375}5})$ $O(n^{2})$ Exact Deterministic Time
Vassilevska Williams 2014 $O(n^{2.{37287}3})$ $O(n^{2})$ Exact Deterministic Time
François Le Gall 2014 $O(n^{2.{372863}9})$ $O(n^{2})$ Exact Deterministic Time
Bini's algorithm 1979 $O(n^{2.{779}9})$ $O(n^{2})$ $O(n logn)$ error Deterministic Time
Schonhage's algorithm 1980 $O(n^{({3}*\log {52}/l \og {110})}) ~ O(n^{2.{521}8})$ $O(n^{2})$ ? Deterministic Time
Output-Sensitive Quantum BMM 2018 O*( \min \{n^{1/3} L^{17/{3}0}, n^{1.5} L^{1/4}\}) Exact Quantum Time
2018 $O(n^{3} / log^{2.25} n)$ Exact Deterministic Time
O'Neil 1973 $O(n^{3})$ Exact Deterministic Time
Method of Four Russians 1970 $O(n^{3}/(log n)$^{2}) Exact Deterministic Time
Bansal, Williams 2009 $O(n^{3} * (log log n)$^{2} / log^{2.25} n) Exact Randomized Time
Bansal, Williams 2009 $O(n^{3} * (log log n)$^{2} / (w * (log n)^{7}/{6})) Exact Randomized Time
Chan 2015 $O(n^{3} * (log log n)$^{3} / log^{3} n) Exact Deterministic Time
Chan 2015 $O(n^{3} * (log w)$^{3} / (w * log^{2} n)) Exact Deterministic Time
Yu 2015 $O(n^{3}*poly(log log n)$/log^{4} n) Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

References/Citation

https://arxiv.org/pdf/2010.05846.pdf