Integer Factoring: Difference between revisions
Jump to navigation
Jump to search
(Created page with "{{DISPLAYTITLE:Integer Factoring (Integer Factoring)}} == Description == Given an $n$-bit integer $N$, find a non-trivial factorization $N=pq$ (where $p, q>1$ are integers) or return that $N$ is prime. For "first category" algorithms, the running time depends on the size of smallest prime factor. == Related Problems == Related: Smallest Factor == Parameters == <pre>n: number of bits in the integer B: bound parameter (if needed)</pre> == Table of Algorithms =...") |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 10: | Line 10: | ||
== Parameters == | == Parameters == | ||
$n$: number of bits in the integer | |||
B: bound parameter (if needed) | |||
$B$: bound parameter (if needed) | |||
== Table of Algorithms == | == Table of Algorithms == | ||
{| class="wikitable sortable" style="text-align:center;" width="100%" | |||
== | |||
! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Reference | |||
|- | |||
[[ | | [[Trial division (First Category Integer Factoring Integer Factoring)|Trial division]] || 1202 || $O({2}^{n/2})$ || $O(n)$ || Exact || Deterministic || | ||
|- | |||
| [[Wheel factorization (First Category Integer Factoring Integer Factoring)|Wheel factorization]] || 1940 || $O({2}^{n/2})$ || $O(n)$ || Exact || Deterministic || | |||
|- | |||
| [[Pollard's rho algorithm (First Category Integer Factoring Integer Factoring)|Pollard's rho algorithm]] || 1975 || - || $O(n)$ || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/article/10.1007%2FBF01933667 Time] | |||
|- | |||
| [[Pollard's p − 1 algorithm (First Category Integer Factoring Integer Factoring)|Pollard's p − 1 algorithm]] || 1974 || $O(B*log B*log^{2}(n)$)? || $O(n+B)$ || Exact || Deterministic || [https://www-cambridge-org.ezproxy.canberra.edu.au/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/theorems-on-factorization-and-primality-testing/6762E84DBD34AEF13E6B1D1A8334A989 Time] | |||
|- | |||
| [[Williams' p + 1 algorithm (First Category Integer Factoring Integer Factoring)|Williams' p + 1 algorithm]] || 1982 || $O({2}^n)$ || $O(n)$? || Exact || Deterministic || [https://www-jstor-org.ezproxy.canberra.edu.au/stable/2007633?origin=crossref Time] | |||
|- | |||
| [[Lenstra elliptic curve factorization (First Category Integer Factoring Integer Factoring)|Lenstra elliptic curve factorization]] || 1987 || $O(e^{(\sqrt(({1}+o({1}))n*log n))})$ || $O(n)$? || Exact || Deterministic || [https://www.jstor.org/stable/1971363?origin=crossref&seq=1 Time] | |||
|- | |||
| [[Fermat's factorization method (First Category Integer Factoring Integer Factoring)|Fermat's factorization method]] || 1894 || $O({2}^n)$ || $O(n)$? || Exact || Deterministic || [https://archive.org/details/oeuvresdefermat02ferm Time] | |||
|- | |||
| [[Euler's factorization method (First Category Integer Factoring Integer Factoring)|Euler's factorization method]] || 1940 || $O({2}^{(n/{2})})$ || $O(n)$ || Exact || Deterministic || | |||
|- | |||
| [[Dixon's algorithm (Second Category Integer Factoring Integer Factoring)|Dixon's algorithm]] || 1981 || $O(e^{({2} \sqrt({2}) \sqrt(n*logn))}){4} || $O(n+(B/logB)$^{2})? || Exact || Deterministic || [https://www-ams-org.ezproxy.canberra.edu.au/journals/mcom/1981-36-153/S0025-5718-1981-0595059-1/home.html Time] | |||
|- | |||
| [[Continued fraction factorization (CFRAC) (Second Category Integer Factoring Integer Factoring)|Continued fraction factorization (CFRAC)]] || 1931 || $O(e^{\sqrt({2}n*logn)})$ || $O(n+(B/logB)$^{2})? || Exact || Deterministic || [https://www-ams-org.ezproxy.canberra.edu.au/journals/bull/1931-37-10/S0002-9904-1931-05271-X/home.html Time] | |||
|- | |||
| [[Quadratic sieve (Second Category Integer Factoring Integer Factoring)|Quadratic sieve]] || 1981 || - || $O(n+(B/logB)$^{2})? || Exact || Deterministic || [https://www.semanticscholar.org/paper/Analysis-and-comparison-of-some-integer-factoring-Pomerance/134b7b065a73d4ca00bb16c7b8bebbde951b0ba0 Time] | |||
|- | |||
| [[Rational sieve (Second Category Integer Factoring Integer Factoring)|Rational sieve]] || 1993 || $O(e^{sqrt(({2}+o({1})$)n*logn)}) || $O(n+(B/logB)$^{2})? || Exact || Parallel || [https://www-ams-org.ezproxy.canberra.edu.au/journals/mcom/1993-61-203/S0025-5718-1993-1182953-4/S0025-5718-1993-1182953-4.pdf Time] | |||
|- | |||
| [[Shanks's square forms factorization (SQUFOF) (Second Category Integer Factoring Integer Factoring)|Shanks's square forms factorization (SQUFOF)]] || 2007 || $O({2}^{n/4})$ || $O(n)$? || Exact || Deterministic || [https://www-ams-org.ezproxy.canberra.edu.au/journals/mcom/2008-77-261/S0025-5718-07-02010-8/S0025-5718-07-02010-8.pdf Time] | |||
|- | |||
| [[Special number field sieve (First Category Integer Factoring Integer Factoring)|Special number field sieve]] || 1940 || $O(exp(({1}+o({1})$)({32}n/{9})^{({1}/{3})}(log n)^{({2}/{3})}) heuristically? || $O(n^{2/3})$ || Exact || Deterministic || [http://www.ams.org.ezproxy.canberra.edu.au/notices/199612/pomerance.pdf Space] | |||
|- | |||
| [[General number field sieve (Second Category Integer Factoring Integer Factoring)|General number field sieve]] || 1996 || $O(exp(({1}+o({1})$)({64}n/{9})^{({1}/{3})}(log n)^{({2}/{3})}) heuristically? || $O(n^{2/3})$ || Exact || Deterministic || [http://www.ams.org.ezproxy.canberra.edu.au/notices/199612/pomerance.pdf Time & Space] | |||
|- | |||
| [[Shor's algorithm Quantum Implementation (Second Category Integer Factoring Integer Factoring)|Shor's algorithm Quantum Implementation]] || 1994 || $O(n)$ || $O(n)$ || Exact || Quantum || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/365700/ Time] & [https://quantum-computing.ibm.com/composer/docs/iqx/guide/shors-algorithm Space] | |||
|- | |||
|} | |||
== | == Time Complexity Graph == | ||
[[File:Integer Factoring - | [[File:Integer Factoring - Time.png|1000px]] |
Latest revision as of 09:07, 28 April 2023
Description
Given an $n$-bit integer $N$, find a non-trivial factorization $N=pq$ (where $p, q>1$ are integers) or return that $N$ is prime. For "first category" algorithms, the running time depends on the size of smallest prime factor.
Related Problems
Related: Smallest Factor
Parameters
$n$: number of bits in the integer
$B$: bound parameter (if needed)
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Trial division | 1202 | $O({2}^{n/2})$ | $O(n)$ | Exact | Deterministic | |
Wheel factorization | 1940 | $O({2}^{n/2})$ | $O(n)$ | Exact | Deterministic | |
Pollard's rho algorithm | 1975 | - | $O(n)$ | Exact | Deterministic | Time |
Pollard's p − 1 algorithm | 1974 | $O(B*log B*log^{2}(n)$)? | $O(n+B)$ | Exact | Deterministic | Time |
Williams' p + 1 algorithm | 1982 | $O({2}^n)$ | $O(n)$? | Exact | Deterministic | Time |
Lenstra elliptic curve factorization | 1987 | $O(e^{(\sqrt(({1}+o({1}))n*log n))})$ | $O(n)$? | Exact | Deterministic | Time |
Fermat's factorization method | 1894 | $O({2}^n)$ | $O(n)$? | Exact | Deterministic | Time |
Euler's factorization method | 1940 | $O({2}^{(n/{2})})$ | $O(n)$ | Exact | Deterministic | |
Dixon's algorithm | 1981 | $O(e^{({2} \sqrt({2}) \sqrt(n*logn))}){4} | $O(n+(B/logB)$^{2})? | Exact | Deterministic | Time |
Continued fraction factorization (CFRAC) | 1931 | $O(e^{\sqrt({2}n*logn)})$ | $O(n+(B/logB)$^{2})? | Exact | Deterministic | Time |
Quadratic sieve | 1981 | - | $O(n+(B/logB)$^{2})? | Exact | Deterministic | Time |
Rational sieve | 1993 | $O(e^{sqrt(({2}+o({1})$)n*logn)}) | $O(n+(B/logB)$^{2})? | Exact | Parallel | Time |
Shanks's square forms factorization (SQUFOF) | 2007 | $O({2}^{n/4})$ | $O(n)$? | Exact | Deterministic | Time |
Special number field sieve | 1940 | $O(exp(({1}+o({1})$)({32}n/{9})^{({1}/{3})}(log n)^{({2}/{3})}) heuristically? | $O(n^{2/3})$ | Exact | Deterministic | Space |
General number field sieve | 1996 | $O(exp(({1}+o({1})$)({64}n/{9})^{({1}/{3})}(log n)^{({2}/{3})}) heuristically? | $O(n^{2/3})$ | Exact | Deterministic | Time & Space |
Shor's algorithm Quantum Implementation | 1994 | $O(n)$ | $O(n)$ | Exact | Quantum | Time & Space |
Time Complexity Graph
Error creating thumbnail: Unable to save thumbnail to destination