Gröbner Bases: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 6: Line 6:
== Parameters ==  
== Parameters ==  


n: number of variables in each polynomial
$n$: number of variables in each polynomial


d: maximal total degree of the polynomials
$d$: maximal total degree of the polynomials


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 20: Line 20:
| [[Buchberger's algorithm (Gröbner Bases Gröbner Bases)|Buchberger's algorithm]] || 1976 || d^{({2}^{(n+o({1})})}) || d^{({2}^{(n+o({1}))})}?? || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/10.1145/1088216.1088219 Time]
| [[Buchberger's algorithm (Gröbner Bases Gröbner Bases)|Buchberger's algorithm]] || 1976 || d^{({2}^{(n+o({1})})}) || d^{({2}^{(n+o({1}))})}?? || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/10.1145/1088216.1088219 Time]
|-
|-
| [[Faugère F4 algorithm (Gröbner Bases Gröbner Bases)|Faugère F4 algorithm]] || 1999 || $O(C(n+D_reg, D_reg)$^{\omega}) where omega is the exponent on matrix multiplication || $O(C(n+D_{reg}, D_{reg})$^{2})? || Exact || Deterministic || [https://linkinghub-elsevier-com.ezproxy.canberra.edu.au/retrieve/pii/S0022404999000055 Time]
| [[Faugère F4 algorithm (Gröbner Bases Gröbner Bases)|Faugère F4 algorithm]] || 1999 || $O(C(n+D_{reg}, D_{reg})$^{\omega}) where omega is the exponent on matrix multiplication || $O(C(n+D_{reg}, D_{reg})$^{2})? || Exact || Deterministic || [https://linkinghub-elsevier-com.ezproxy.canberra.edu.au/retrieve/pii/S0022404999000055 Time]
|-
|-
| [[Faugère F5 algorithm (Gröbner Bases Gröbner Bases)|Faugère F5 algorithm]] || 2002 || $O(C(n+D_reg, D_reg)$^{\omega}) where omega is the exponent on matrix multiplication || $O(C(n+D_{reg}, D_{reg})$^{2})? || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/10.1145/780506.780516 Time]
| [[Faugère F5 algorithm (Gröbner Bases Gröbner Bases)|Faugère F5 algorithm]] || 2002 || $O(C(n+D_{reg}, D_{reg})$^{\omega}) where omega is the exponent on matrix multiplication || $O(C(n+D_{reg}, D_{reg})$^{2})? || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/10.1145/780506.780516 Time]
|-
|-
|}
|}
Line 29: Line 29:


[[File:Gröbner Bases - Time.png|1000px]]
[[File:Gröbner Bases - Time.png|1000px]]
== Space Complexity Graph ==
[[File:Gröbner Bases - Space.png|1000px]]
== Pareto Frontier Improvements Graph ==
[[File:Gröbner Bases - Pareto Frontier.png|1000px]]

Latest revision as of 09:07, 28 April 2023

Description

In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring $K(x_1, \ldots ,x_n)$ over a field $K$. As an algorithmic problem, given a set of polynomials in $K(x_1, \ldots,x_n)$, determine a Gröbner basis.

Parameters

$n$: number of variables in each polynomial

$d$: maximal total degree of the polynomials

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Buchberger's algorithm 1976 d^{({2}^{(n+o({1})})}) d^{({2}^{(n+o({1}))})}?? Exact Deterministic Time
Faugère F4 algorithm 1999 $O(C(n+D_{reg}, D_{reg})$^{\omega}) where omega is the exponent on matrix multiplication $O(C(n+D_{reg}, D_{reg})$^{2})? Exact Deterministic Time
Faugère F5 algorithm 2002 $O(C(n+D_{reg}, D_{reg})$^{\omega}) where omega is the exponent on matrix multiplication $O(C(n+D_{reg}, D_{reg})$^{2})? Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination