Eigenpair closest to mu: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:Eigenpair closest to mu (Eigenvalues (Iterative Methods))}} == Description == Given an $n \times n$ matrix $A$, find the eigenpair (eigenvalue and associated eigenvector) of $A$ with the eigenvalue closest to $\mu$. == Related Problems == Generalizations: Any Eigenpair Related: All Eigenvalues, Any Eigenvalue, All Eigenpairs, Eigenpair with the Largest Eigenvalue == Parameters == No parameters found. == Table of Algorithms ==...")
 
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 12: Line 12:
== Parameters ==  
== Parameters ==  


No parameters found.
$n$: dimension of matrix


== Table of Algorithms ==  
== Table of Algorithms ==  


Currently no algorithms in our database for the given problem.
{| class="wikitable sortable"  style="text-align:center;" width="100%"


== Time Complexity graph ==
! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Reference


[[File:Eigenvalues (Iterative Methods) - Eigenpair closest to mu - Time.png|1000px]]
|-


== Space Complexity graph ==
| [[Inverse iteration (Eigenpair closest to mu; Any eigenpair; Any eigenvalue Eigenvalues (Iterative Methods))|Inverse iteration]] || 1921 || $O(n^{2})$ || $O(n^{2})$ || Exact || Deterministic || [https://onlinelibrary-wiley-com.ezproxy.canberra.edu.au/doi/abs/10.1002/zamm.19210010104 Time]
|-
| [[LOBPCG algorithm (Eigenpair closest to mu; Any eigenpair; Any eigenvalue Eigenvalues (Iterative Methods))|LOBPCG algorithm]] || 1948 || $O(n^{2})$ || $O(n)$? || Exact || Deterministic || 
|-
| [[Homotopy method (All eigenpairs; Eigenpair closest to mu; Any eigenpair; Any eigenvalue; All eigenvalues Eigenvalues (Iterative Methods))|Homotopy method]] || 1992 || $O(n^{2})$ || $O(n^{2})$?? || Exact || Deterministic || [https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=530065 Time]
|-
| [[Folded spectrum method (Eigenpair closest to mu; Any eigenpair; Any eigenvalue Eigenvalues (Iterative Methods))|Folded spectrum method]] || 1934 || $O(n^{2})$ || $O(n)$? || Exact || Deterministic || [https://journals.aps.org/pr/abstract/10.1103/PhysRev.46.828 Time]
|-
|}


[[File:Eigenvalues (Iterative Methods) - Eigenpair closest to mu - Space.png|1000px]]
== Time Complexity Graph ==


== Pareto Decades graph ==
[[File:Eigenvalues (Iterative Methods) - Eigenpair closest to mu - Time.png|1000px]]
 
[[File:Eigenvalues (Iterative Methods) - Eigenpair closest to mu - Pareto Frontier.png|1000px]]

Latest revision as of 09:08, 28 April 2023

Description

Given an $n \times n$ matrix $A$, find the eigenpair (eigenvalue and associated eigenvector) of $A$ with the eigenvalue closest to $\mu$.

Related Problems

Generalizations: Any Eigenpair

Related: All Eigenvalues, Any Eigenvalue, All Eigenpairs, Eigenpair with the Largest Eigenvalue

Parameters

$n$: dimension of matrix

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Inverse iteration 1921 $O(n^{2})$ $O(n^{2})$ Exact Deterministic Time
LOBPCG algorithm 1948 $O(n^{2})$ $O(n)$? Exact Deterministic
Homotopy method 1992 $O(n^{2})$ $O(n^{2})$?? Exact Deterministic Time
Folded spectrum method 1934 $O(n^{2})$ $O(n)$? Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination