Lowest Common Ancestor: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 13: Line 13:
== Parameters ==  
== Parameters ==  


n: number of vertices
$n$: number of vertices


m: number of total number of operations (queries, links, and cuts)
$m$: number of total number of operations (queries, links, and cuts)


== Table of Algorithms ==  
== Table of Algorithms ==  


Currently no algorithms in our database for the given problem.
{| class="wikitable sortable"  style="text-align:center;" width="100%"


== Time Complexity graph ==
! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Reference


[[File:Lowest Common Ancestor - Time.png|1000px]]
|-


== Space Complexity graph ==  
| [[Tarjan's off-line lowest common ancestors algorithm (Off-Line Lowest Common Ancestor Lowest Common Ancestor)|Tarjan's off-line lowest common ancestors algorithm]] || 1984 || $O(n+m)$ || $O(n)$ || Exact || Deterministic || [https://www.semanticscholar.org/paper/Fast-Algorithms-for-Finding-Nearest-Common-Harel-Tarjan/8867d059dda279b1aed4a0301e4e46f9daf65174 Time & Space]
|-
| [[Schieber; Vishkin (Lowest Common Ancestor with Static Trees Lowest Common Ancestor)|Schieber; Vishkin]] || 1988 || $O(n+m)$ || $O(n)$ || Exact || Deterministic || [https://epubs-siam-org.ezproxy.canberra.edu.au/doi/abs/10.1137/0217079?journalCode=smjcat Time & Space]
|-
| [[Berkman; Vishkin (Lowest Common Ancestor with Static Trees Lowest Common Ancestor)|Berkman; Vishkin]] || 1993 || $O(n+m)$ ? || $O(n)$ || Exact || Deterministic || [https://apps.dtic.mil/dtic/tr/fulltext/u2/a227803.pdf Time]
|-
| [[Bender; Colton (LCA <=> RMQ) (Lowest Common Ancestor with Static Trees Lowest Common Ancestor)|Bender; Colton (LCA <=> RMQ)]] || 2000 || $O(n+m)$ || $O(n)$ || Exact || Deterministic || [https://www.ics.uci.edu/~eppstein/261/BenFar-LCA-00.pdf Time]
|-
| [[Stephen Alstrup, Cyril Gavoille, Haim Kaplan & Theis Rauhe  (Lowest Common Ancestor with Static Trees Lowest Common Ancestor)|Stephen Alstrup, Cyril Gavoille, Haim Kaplan & Theis Rauhe ]] || 2004 || $O(n+m)$ || $O(n)$ || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/article/10.1007/s00224-004-1155-5 Time]
|-
| [[Aho, Hopcroft, and Ullman (Offline) (Off-Line Lowest Common Ancestor Lowest Common Ancestor)|Aho, Hopcroft, and Ullman (Offline)]] || 1976 || $O(n+ m*alpha(m + n, n)$) where alpha is the inverse Ackermann function || $O(n)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/800125.804056 Time] & [https://www.cs.bgu.ac.il/~segal/PAPERS2/tarj.pdf Space]
|-
| [[Aho, Hopcroft, and Ullman (Static Trees) (Lowest Common Ancestor with Static Trees Lowest Common Ancestor)|Aho, Hopcroft, and Ullman (Static Trees)]] || 1976 || $O((m+n)$*log(log(n))) || $O(n*log(log(n)$)) || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/800125.804056 Time] & [https://www.cs.bgu.ac.il/~segal/PAPERS2/tarj.pdf Space]
|-
| [[Aho, Hopcroft, and Ullman (Linking) (Lowest Common Ancestor with Linking Lowest Common Ancestor)|Aho, Hopcroft, and Ullman (Linking)]] || 1976 || $O((m+n)$*log(n)) || $O(n*log(n)$) || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/800125.804056 Time] & [https://www.cs.bgu.ac.il/~segal/PAPERS2/tarj.pdf Space]
|-
| [[Modified van Leeuwen (Static Trees) (Lowest Common Ancestor with Static Trees Lowest Common Ancestor)|Modified van Leeuwen (Static Trees)]] || 1976 || $O(n+m*log(log(n)$)) || $O(n)$ || Exact || Deterministic || [https://www.cs.bgu.ac.il/~segal/PAPERS2/tarj.pdf Space]
|-
| [[Modified van Leeuwen (Linking Roots) (Lowest Common Ancestor with Linking Roots Lowest Common Ancestor)|Modified van Leeuwen (Linking Roots)]] || 1976 || $O(n+m*log(log(n)$)) || $O(n)$ || Exact || Deterministic || [https://www.cs.bgu.ac.il/~segal/PAPERS2/tarj.pdf Space]
|-
| [[Sleator and Tarjan (Linking) (Lowest Common Ancestor with Linking Lowest Common Ancestor)|Sleator and Tarjan (Linking)]] || 1983 || $O(n+m*log(n)$) || $O(n)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0022000083900065 Time] & [https://www.cs.bgu.ac.il/~segal/PAPERS2/tarj.pdf Space]
|-
| [[Sleator and Tarjan (Linking and Cutting) (Lowest Common Ancestor with Linking and Cutting Lowest Common Ancestor)|Sleator and Tarjan (Linking and Cutting)]] || 1983 || $O(n+m*log(n)$) || $O(n)$ || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0022000083900065 Time] & [https://www.cs.bgu.ac.il/~segal/PAPERS2/tarj.pdf Space]
|-
| [[Harel, Tarjan (Static Trees) (Lowest Common Ancestor with Static Trees Lowest Common Ancestor)|Harel, Tarjan (Static Trees)]] || 1984 || $O(n+m)$ || $O(n)$ || Exact || Deterministic || [https://www.semanticscholar.org/paper/Fast-Algorithms-for-Finding-Nearest-Common-Harel-Tarjan/8867d059dda279b1aed4a0301e4e46f9daf65174 Time] & [https://www.cs.bgu.ac.il/~segal/PAPERS2/tarj.pdf Space]
|-
| [[Harel, Tarjan (Linking Roots) (Lowest Common Ancestor with Linking Roots Lowest Common Ancestor)|Harel, Tarjan (Linking Roots)]] || 1984 || $O(n+ m*alpha(m + n, n)$) where alpha is the inverse Ackermann function || $O(n)$ || Exact || Deterministic || [https://www.semanticscholar.org/paper/Fast-Algorithms-for-Finding-Nearest-Common-Harel-Tarjan/8867d059dda279b1aed4a0301e4e46f9daf65174 Time] & [https://www.cs.bgu.ac.il/~segal/PAPERS2/tarj.pdf Space]
|-
| [[Schieber; Vishkin (Parallel) (Lowest Common Ancestor with Static Trees Lowest Common Ancestor)|Schieber; Vishkin (Parallel)]] || 1988 || $O(m+log(n)$) || $O(n)$ total (auxiliary?) || Exact || Parallel || [https://epubs-siam-org.ezproxy.canberra.edu.au/doi/abs/10.1137/0217079?journalCode=smjcat Time] & [https://www-proquest-com.ezproxy.canberra.edu.au/docview/919780720?pq-origsite=gscholar&fromopenview=true Space]
|-
| [[Fischer, Heun (Lowest Common Ancestor with Static Trees Lowest Common Ancestor)|Fischer, Heun]] || 2006 || $O(m+n)$ || $O(n)$ || Exact || Parallel || [https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.64.5439 Time & Space]
|-
| [[Kmett (Lowest Common Ancestor with Static Trees Lowest Common Ancestor)|Kmett]] || 2015 || $O(m*log(h)$) ||  || Exact || Parallel || [https://www.schoolofhaskell.com/user/edwardk/online-lca Time]
|-
|}


[[File:Lowest Common Ancestor - Space.png|1000px]]
== Time Complexity Graph ==


== Pareto Decades graph ==
[[File:Lowest Common Ancestor - Time.png|1000px]]
 
[[File:Lowest Common Ancestor - Pareto Frontier.png|1000px]]

Latest revision as of 09:08, 28 April 2023

Description

Given a collection of rooted trees, answer queries of the form, "What is the nearest common ancestor of vertices $x$ and $y$?"

Related Problems

Subproblem: Off-Line Lowest Common Ancestor, Lowest Common Ancestor with Static Trees, Lowest Common Ancestor with Linking Roots, Lowest Common Ancestor with Linking, Lowest Common Ancestors with Linking and Cutting

Related: Lowest Common Ancestor with Static Trees, Lowest Common Ancestor with Linking Roots, Lowest Common Ancestor with Linking, Lowest Common Ancestors with Linking and Cutting

Parameters

$n$: number of vertices

$m$: number of total number of operations (queries, links, and cuts)

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Tarjan's off-line lowest common ancestors algorithm 1984 $O(n+m)$ $O(n)$ Exact Deterministic Time & Space
Schieber; Vishkin 1988 $O(n+m)$ $O(n)$ Exact Deterministic Time & Space
Berkman; Vishkin 1993 $O(n+m)$ ? $O(n)$ Exact Deterministic Time
[[Bender; Colton (LCA <=> RMQ) (Lowest Common Ancestor with Static Trees Lowest Common Ancestor)|Bender; Colton (LCA <=> RMQ)]] 2000 $O(n+m)$ $O(n)$ Exact Deterministic Time
Stephen Alstrup, Cyril Gavoille, Haim Kaplan & Theis Rauhe 2004 $O(n+m)$ $O(n)$ Exact Deterministic Time
Aho, Hopcroft, and Ullman (Offline) 1976 $O(n+ m*alpha(m + n, n)$) where alpha is the inverse Ackermann function $O(n)$ Exact Deterministic Time & Space
Aho, Hopcroft, and Ullman (Static Trees) 1976 $O((m+n)$*log(log(n))) $O(n*log(log(n)$)) Exact Deterministic Time & Space
Aho, Hopcroft, and Ullman (Linking) 1976 $O((m+n)$*log(n)) $O(n*log(n)$) Exact Deterministic Time & Space
Modified van Leeuwen (Static Trees) 1976 $O(n+m*log(log(n)$)) $O(n)$ Exact Deterministic Space
Modified van Leeuwen (Linking Roots) 1976 $O(n+m*log(log(n)$)) $O(n)$ Exact Deterministic Space
Sleator and Tarjan (Linking) 1983 $O(n+m*log(n)$) $O(n)$ Exact Deterministic Time & Space
Sleator and Tarjan (Linking and Cutting) 1983 $O(n+m*log(n)$) $O(n)$ Exact Deterministic Time & Space
Harel, Tarjan (Static Trees) 1984 $O(n+m)$ $O(n)$ Exact Deterministic Time & Space
Harel, Tarjan (Linking Roots) 1984 $O(n+ m*alpha(m + n, n)$) where alpha is the inverse Ackermann function $O(n)$ Exact Deterministic Time & Space
Schieber; Vishkin (Parallel) 1988 $O(m+log(n)$) $O(n)$ total (auxiliary?) Exact Parallel Time & Space
Fischer, Heun 2006 $O(m+n)$ $O(n)$ Exact Parallel Time & Space
Kmett 2015 $O(m*log(h)$) Exact Parallel Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination