Point-in-Polygon: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 6: Line 6:
== Parameters ==  
== Parameters ==  


No parameters found.
$n$: number of edges of polygon


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 18: Line 18:
| [[Ray casting algorithm Shimrat; M (Point-in-Polygon Point-in-Polygon)|Ray casting algorithm Shimrat; M]] || 1962 || $O(n)$ || $O({1})$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/368637.368653 Time]
| [[Ray casting algorithm Shimrat; M (Point-in-Polygon Point-in-Polygon)|Ray casting algorithm Shimrat; M]] || 1962 || $O(n)$ || $O({1})$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/368637.368653 Time]
|-
|-
| [[Nordbeck and Rystedt (Grid Method) (Point-in-Polygon Point-in-Polygon)|Nordbeck and Rystedt (Grid Method)]] || 1967 || $O(a)$ || $O({1})$ || Exact || Deterministic || [https://doi-org.ezproxy.canberra.edu.au/10.1007/BF01934125 Time]
| [[Nordbeck and Rystedt (Grid Method) (Point-in-Polygon Point-in-Polygon)|Nordbeck and Rystedt (Grid Method)]] || 1967 || $O(n)$ || $O(n)$ || Exact || Deterministic || [https://doi-org.ezproxy.canberra.edu.au/10.1007/BF01934125 Time] & [https://ir.nctu.edu.tw/bitstream/11536/749/1/A1997WM15100010.pdf Space]
|-
|-
| [[Salomon (Swath Method) (Point-in-Polygon Point-in-Polygon)|Salomon (Swath Method)]] || 1978 || $O(nlogn)$ || $O(n^{2})$ || Exact || Deterministic || [https://doi-org.ezproxy.canberra.edu.au/10.1016/0098-3004(78)90085-7 Time] & [https://ir.nctu.edu.tw/bitstream/11536/749/1/A1997WM15100010.pdf Space]
| [[Salomon (Swath Method) (Point-in-Polygon Point-in-Polygon)|Salomon (Swath Method)]] || 1978 || $O(n\log n)$ || $O(n^{2})$ || Exact || Deterministic || [https://doi-org.ezproxy.canberra.edu.au/10.1016/0098-3004(78)90085-7 Time] & [https://ir.nctu.edu.tw/bitstream/11536/749/1/A1997WM15100010.pdf Space]
|-
|-
| [[Nordbeck and Rystedt (Sum of area) (Point-in-Polygon Point-in-Polygon)|Nordbeck and Rystedt (Sum of area)]] || 1967 || $O(n)$ || $O({1})$ || Exact || Deterministic || [https://doi-org.ezproxy.canberra.edu.au/10.1007/BF01934125 Time]
| [[Nordbeck and Rystedt (Sum of area) (Point-in-Polygon Point-in-Polygon)|Nordbeck and Rystedt (Sum of area)]] || 1967 || $O(n)$ || $O({1})$ || Exact || Deterministic || [https://doi-org.ezproxy.canberra.edu.au/10.1007/BF01934125 Time]
Line 37: Line 37:


[[File:Point-in-Polygon - Time.png|1000px]]
[[File:Point-in-Polygon - Time.png|1000px]]
== Space Complexity Graph ==
[[File:Point-in-Polygon - Space.png|1000px]]
== Time-Space Tradeoff ==
[[File:Point-in-Polygon - Pareto Frontier.png|1000px]]

Latest revision as of 09:11, 28 April 2023

Description

With a given polygon $P$ and an arbitrary point $q$, determine whether point $q$ is enclosed by the edges of the polygon.

Parameters

$n$: number of edges of polygon

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Ray casting algorithm Shimrat; M 1962 $O(n)$ $O({1})$ Exact Deterministic Time
Nordbeck and Rystedt (Grid Method) 1967 $O(n)$ $O(n)$ Exact Deterministic Time & Space
Salomon (Swath Method) 1978 $O(n\log n)$ $O(n^{2})$ Exact Deterministic Time & Space
Nordbeck and Rystedt (Sum of area) 1967 $O(n)$ $O({1})$ Exact Deterministic Time
Preparata and Shamos (Wedge) 1985 $O(n)$ $O(n)$ Exact Deterministic Time & Space
Saalfeld (Sign of offset) 1987 $O(n)$ $O({1})$ Exact Deterministic Time
Preparata and Shamos (Intersection sum of angle) 1985 $O(n)$ $O({1})$ Exact Deterministic Time
Nordbeck and Rystedt (Orientation) 1967 $O(n)$ $O({1})$ Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination