Discrete Logarithm Over Finite Fields: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
== Parameters == | == Parameters == | ||
n: number of digits/bits in the order of the finite group | $n$: number of digits/bits in the order of the finite group | ||
== Table of Algorithms == | == Table of Algorithms == | ||
Line 21: | Line 21: | ||
|- | |- | ||
| [[Function Field Sieve (FFS) (Discrete Logarithm Over Finite Fields Logarithm Calculations)|Function Field Sieve (FFS)]] || 1999 || $O({2}^n)$ || $O(n^{2/3})$? || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/S0890540198927614 Time] | | [[Function Field Sieve (FFS) (Discrete Logarithm Over Finite Fields Logarithm Calculations)|Function Field Sieve (FFS)]] || 1999 || $O({2}^n)$ || $O(n^{2/3})$? || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/S0890540198927614 Time] | ||
|- | |||
| [[Index calculus algorithm (Discrete Logarithm Over Finite Fields, F_q Logarithm Calculations)|Index calculus algorithm]] || 1922 || $O(e^{(\sqrt({2}) \sqrt(n*logn))})$ || $O(n+r^{2})$? || Exact || Deterministic || | |||
|- | |- | ||
| [[Number Field Sieve (NFS) (Discrete Logarithm Over Finite Fields Logarithm Calculations)|Number Field Sieve (NFS)]] || 1990 || $O({2}^n)$ || $O(n^{2/3})$ || Exact || Deterministic || [http://www.ams.org.ezproxy.canberra.edu.au/notices/199612/pomerance.pdf Time & Space] | | [[Number Field Sieve (NFS) (Discrete Logarithm Over Finite Fields Logarithm Calculations)|Number Field Sieve (NFS)]] || 1990 || $O({2}^n)$ || $O(n^{2/3})$ || Exact || Deterministic || [http://www.ams.org.ezproxy.canberra.edu.au/notices/199612/pomerance.pdf Time & Space] | ||
Line 32: | Line 34: | ||
|} | |} | ||
== Time Complexity | == Time Complexity Graph == | ||
[[File:Logarithm Calculations - Discrete Logarithm Over Finite Fields - Time.png|1000px]] | [[File:Logarithm Calculations - Discrete Logarithm Over Finite Fields - Time.png|1000px]] | ||
Latest revision as of 09:11, 28 April 2023
Description
Let $F_{p^n}$ denote the finite field of $p^n$ elements, where $p$ is a prime. Let $x$ be a generator for the multiplicative group of $F_{p^n}$. The discrete logarithm problem over $F_{p^n}$ is to compute, for any given nonzero $h \in F_{p^n}$, the least nonnegative integer $e$ such that $x^e=h$. In this context we shall write $e=\log_x h$.
Parameters
$n$: number of digits/bits in the order of the finite group
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Trial Multiplication | 1940 | $O({2}^n)$ | $O({1})$ | Exact | Deterministic | |
Baby-step Giant-step | 1971 | $O({2}^{\sqrt{n}})$ | $O({2}^{\sqrt{n}})$ | Exact | Deterministic | Time |
Function Field Sieve (FFS) | 1999 | $O({2}^n)$ | $O(n^{2/3})$? | Exact | Deterministic | Time |
Index calculus algorithm | 1922 | $O(e^{(\sqrt({2}) \sqrt(n*logn))})$ | $O(n+r^{2})$? | Exact | Deterministic | |
Number Field Sieve (NFS) | 1990 | $O({2}^n)$ | $O(n^{2/3})$ | Exact | Deterministic | Time & Space |
Pohlig-Hellman | 1978 | $O({2}^{\sqrt{n}})$, only for primes; does much better for composites | $O({2}^{\sqrt{n}})$ (though only for primes) | Exact | Deterministic | Time |
Pollard's rho algorithm | 1978 | $O({2}^{(n/{2})})$ | $O({1})$ | Exact | Deterministic | Time |
Pollard's kangaroo algorithm | 1978 | $O({2}^n)$ | $O({1})$ | Exact | Deterministic | Time |
Time Complexity Graph
Error creating thumbnail: Unable to save thumbnail to destination