Polynomial Interpolation: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 8: Line 8:
== Parameters ==  
== Parameters ==  


n: number of points
$n$: number of points


d: dimension of space
$d$: dimension of space


== Table of Algorithms ==  
== Table of Algorithms ==  


Currently no algorithms in our database for the given problem.
{| class="wikitable sortable"  style="text-align:center;" width="100%"


== Time Complexity graph ==
! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Reference


[[File:Polynomial Interpolation - Time.png|1000px]]
|-


== Space Complexity graph ==  
| [[Gaussian elimination (2-D Polynomial Interpolation Polynomial Interpolation)|Gaussian elimination]] || -150 || $O(n^{3})$ || $O(n^{2})$ || Exact || Deterministic || 
|-
| [[Bjorck (2-D Polynomial Interpolation Polynomial Interpolation)|Bjorck]] || 1970 || $O(n^{2})$ || $O(n)$ || Exact || Deterministic || [https://www-jstor-org.ezproxy.canberra.edu.au/stable/2004623?origin=crossref&seq=5#metadata_info_tab_contents Time] & [https://academic-oup-com.ezproxy.canberra.edu.au/imajna/article/8/4/473/758789?login=true Space]
|-
| [[Higham (2-D Polynomial Interpolation Polynomial Interpolation)|Higham]] || 1988 || $O(n^{2})$ || $O(n)$ || Exact || Deterministic || [https://academic-oup-com.ezproxy.canberra.edu.au/imajna/article/8/4/473/758789?login=true Time & Space]
|-
| [[Calvetti, Reichel (2-D Polynomial Interpolation Polynomial Interpolation)|Calvetti, Reichel]] || 1993 || $O(n^{2})$ || $O(n)$? || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/article/10.1007/BF01990529 Time]
|-
|}


[[File:Polynomial Interpolation - Space.png|1000px]]
== Time Complexity Graph ==


== Pareto Decades graph ==
[[File:Polynomial Interpolation - Time.png|1000px]]
 
[[File:Polynomial Interpolation - Pareto Frontier.png|1000px]]

Latest revision as of 09:12, 28 April 2023

Description

Given a finite number of points $x_1, \ldots , x_n$, some real constants $y_1, \ldots , y_n$ and a subspace $V$ of $\Pi^d$, find a polynomial $p \in V$, such that

$p(x_j) = y_j$, $j = 1, ... , n$

Parameters

$n$: number of points

$d$: dimension of space

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Gaussian elimination -150 $O(n^{3})$ $O(n^{2})$ Exact Deterministic
Bjorck 1970 $O(n^{2})$ $O(n)$ Exact Deterministic Time & Space
Higham 1988 $O(n^{2})$ $O(n)$ Exact Deterministic Time & Space
Calvetti, Reichel 1993 $O(n^{2})$ $O(n)$? Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination