Cryptanalysis of Linear Feedback Shift Registers: Difference between revisions
Jump to navigation
Jump to search
(Created page with "== Problem Description== == Bounds Chart == 350px == Step Chart == 350px == Improvement Table == {| class="wikitable" style="text-align:center;" width="100%" !width="20%" | Complexity Classes !! width="40%" | Algorithm Paper Links !! width="40%" | Lower Bounds Paper Links |- | rowspan="1" | Exp/Factorial | | |- | rowspan="...") |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | {{DISPLAYTITLE:Cryptanalysis of Linear Feedback Shift Registers (Cryptanalysis of Linear Feedback Shift Registers)}} | ||
== Description == | |||
Find the shortest linear feedback shift register that can generate a given finite sequence of digits. | |||
== | == Parameters == | ||
== | $n$: size of input stream | ||
== Table of Algorithms == | |||
{| class="wikitable sortable" style="text-align:center;" width="100%" | |||
! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Reference | |||
|- | |- | ||
| | |||
| | | [[Berlekamp–Massey algorithm (Cryptanalysis of Linear Feedback Shift Registers Cryptanalysis of Linear Feedback Shift Registers)|Berlekamp–Massey algorithm]] || 1969 || $O(n^{2})$ || $O(n)$? || Exact || Deterministic || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/1054260 Time] | ||
| | |||
|- | |- | ||
| | |} | ||
== Time Complexity Graph == | |||
[[File:Cryptanalysis of Linear Feedback Shift Registers - Time.png|1000px]] | |||
Latest revision as of 09:10, 28 April 2023
Description
Find the shortest linear feedback shift register that can generate a given finite sequence of digits.
Parameters
$n$: size of input stream
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Berlekamp–Massey algorithm | 1969 | $O(n^{2})$ | $O(n)$? | Exact | Deterministic | Time |
Time Complexity Graph
Error creating thumbnail: Unable to save thumbnail to destination