Matrix Chain Ordering Problem: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:Matrix Chain Ordering Problem (Matrix Chain Multiplication)}} == Description == Matrix chain multiplication (or Matrix Chain Ordering Problem; MCOP) is an optimization problem. Given a sequence of matrices, the goal is to find the most efficient way to multiply these matrices. == Related Problems == Subproblem: Approximate MCOP, Matrix Chain Scheduling Problem Related: Matrix Chain Scheduling Problem, Approximate MCSP == Parameters...")
 
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 6: Line 6:
== Related Problems ==  
== Related Problems ==  


Subproblem: [[Approximate MCOP]], [[ Matrix Chain Scheduling Problem]]
Subproblem: [[Approximate MCOP]]


Related: [[Matrix Chain Scheduling Problem]], [[Approximate MCSP]]
Related: [[Matrix Chain Scheduling Problem]], [[Approximate MCSP]]
Line 12: Line 12:
== Parameters ==  
== Parameters ==  


<pre>$n$: number of matrices</pre>
$n$: number of matrices


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 22: Line 22:
|-
|-


| [[Brute Force (Matrix Chain Ordering Problem Matrix Chain Multiplication)|Brute Force]] || 1940 || O ({4}^n) || $O(n)$ || Exact || Deterministic ||   
| [[Brute Force (Matrix Chain Ordering Problem Matrix Chain Multiplication)|Brute Force]] || 1940 || $O({4}^n)$ || $O(n)$ || Exact || Deterministic ||   
|-
|-
| [[Dynamic Programming Algorithm (S. S. Godbole) (Matrix Chain Ordering Problem Matrix Chain Multiplication)|Dynamic Programming Algorithm (S. S. Godbole)]] || 1953 || $O(n^{3})$ || $O(n^{2})$ || Exact || Deterministic ||
| [[Dynamic Programming Algorithm (S. S. Godbole) (Matrix Chain Ordering Problem Matrix Chain Multiplication)|Dynamic Programming Algorithm (S. S. Godbole)]] || 1953 || $O(n^{3})$ || $O(n^{2})$ || Exact || Deterministic || [http://mitpress.mit.edu.ezproxy.canberra.edu.au/9780262046305/introduction-to-algorithms/ Space]
|-
|-
| [[T. C. Hu ; M. T. Shing (Matrix Chain Ordering Problem Matrix Chain Multiplication)|T. C. Hu ; M. T. Shing]] || 1982 || $O(nlogn)$ || $O(n)$ || Exact || Deterministic || [https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.695.2923 Time]
| [[T. C. Hu ; M. T. Shing (Matrix Chain Ordering Problem Matrix Chain Multiplication)|T. C. Hu ; M. T. Shing]] || 1982 || $O(n \log n)$ || $O(n)$ || Exact || Deterministic || [https://doi.org/10.1137/0211028 Time]
|-
|-
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:Matrix Chain Multiplication - Matrix Chain Ordering Problem - Time.png|1000px]]
[[File:Matrix Chain Multiplication - Matrix Chain Ordering Problem - Time.png|1000px]]
== Space Complexity graph ==
[[File:Matrix Chain Multiplication - Matrix Chain Ordering Problem - Space.png|1000px]]
== Pareto Decades graph ==
[[File:Matrix Chain Multiplication - Matrix Chain Ordering Problem - Pareto Frontier.png|1000px]]


== References/Citation ==  
== References/Citation ==  


https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.695.2923
https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.695.2923

Latest revision as of 09:04, 28 April 2023

Description

Matrix chain multiplication (or Matrix Chain Ordering Problem; MCOP) is an optimization problem. Given a sequence of matrices, the goal is to find the most efficient way to multiply these matrices.

Related Problems

Subproblem: Approximate MCOP

Related: Matrix Chain Scheduling Problem, Approximate MCSP

Parameters

$n$: number of matrices

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Brute Force 1940 $O({4}^n)$ $O(n)$ Exact Deterministic
Dynamic Programming Algorithm (S. S. Godbole) 1953 $O(n^{3})$ $O(n^{2})$ Exact Deterministic Space
T. C. Hu ; M. T. Shing 1982 $O(n \log n)$ $O(n)$ Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

References/Citation

https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.695.2923