Voronoi Diagrams: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:Voronoi Diagrams (Voronoi Diagrams)}} == Description == Given a set of n points in 2-dimensional space, compute the Voronoi diagram with the n points as seeds. == Parameters == <pre>n: number of points</pre> == Table of Algorithms == {| class="wikitable sortable" style="text-align:center;" width="100%" ! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Reference |- | Fortune's algorithm (Voronoi Diagrams Voronoi Diagrams)|For...")
 
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 2: Line 2:
== Description ==  
== Description ==  


Given a set of n points in 2-dimensional space, compute the Voronoi diagram with the n points as seeds.
Given a set of $n$ points in 2-dimensional space, compute the Voronoi diagram with the $n$ points as seeds.


== Parameters ==  
== Parameters ==  


<pre>n: number of points</pre>
$n$: number of points


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 16: Line 16:
|-
|-


| [[Fortune's algorithm (Voronoi Diagrams Voronoi Diagrams)|Fortune's algorithm]] || 1986 || $O(nlogn)$ || $O(n)$ auxiliary || Exact || Deterministic || [http://www.wias-berlin.de/people/si/course/files/Fortune87-SweepLine-Voronoi.pdf Time] & [https://www.wias-berlin.de/people/si/course/files/Fortune87-SweepLine-Voronoi.pdf Space]
| [[Fortune's algorithm (Voronoi Diagrams Voronoi Diagrams)|Fortune's algorithm]] || 1986 || $O(n \log n)$ || $O(n)$ || Exact || Deterministic || [http://www.wias-berlin.de/people/si/course/files/Fortune87-SweepLine-Voronoi.pdf Time] & [https://www.wias-berlin.de/people/si/course/files/Fortune87-SweepLine-Voronoi.pdf Space]
|-
|-
| [[Linde–Buzo–Gray algorithm ( Voronoi Diagrams)|Linde–Buzo–Gray algorithm]] || 1980 || $O(nlogn)$ ||  || Exact || Deterministic || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/1094577/ Time]
| [[Linde–Buzo–Gray algorithm ( Voronoi Diagrams)|Linde–Buzo–Gray algorithm]] || 1980 || $O(n \log n)$ ||  || Exact || Deterministic || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/1094577/ Time]
|-
|-
| [[Bowyer–Watson algorithm (Voronoi Diagrams Voronoi Diagrams)|Bowyer–Watson algorithm]] || 1981 || $O(nlogn)$ || $O(n)$ auxiliary || Exact || Deterministic || [https://academic-oup-com.ezproxy.canberra.edu.au/comjnl/article/24/2/167/338200 Time]
| [[Bowyer–Watson algorithm (Voronoi Diagrams Voronoi Diagrams)|Bowyer–Watson algorithm]] || 1981 || $O(n \log n)$ || $O(n)$ || Exact || Deterministic || [https://academic-oup-com.ezproxy.canberra.edu.au/comjnl/article/24/2/167/338200 Time]
|-
|-
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:Voronoi Diagrams - Time.png|1000px]]
[[File:Voronoi Diagrams - Time.png|1000px]]
== Space Complexity graph ==
[[File:Voronoi Diagrams - Space.png|1000px]]
== Pareto Decades graph ==
[[File:Voronoi Diagrams - Pareto Frontier.png|1000px]]

Latest revision as of 09:08, 28 April 2023

Description

Given a set of $n$ points in 2-dimensional space, compute the Voronoi diagram with the $n$ points as seeds.

Parameters

$n$: number of points

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Fortune's algorithm 1986 $O(n \log n)$ $O(n)$ Exact Deterministic Time & Space
Linde–Buzo–Gray algorithm 1980 $O(n \log n)$ Exact Deterministic Time
Bowyer–Watson algorithm 1981 $O(n \log n)$ $O(n)$ Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination