The Vertex Cover Problem: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:The Vertex Cover Problem (The Vertex Cover Problem)}} == Description == A vertex cover of a graph $G$ is a set $C$ of vertices such that every edge of $G$ has at least one endpoint in $C$. The vertex cover problem is to find a minimum-size vertex cover in a given graph $G$. == Related Problems == Subproblem: The Vertex Cover Problem, Degrees Bounded By 3 == Parameters == No parameters found. == Table of Algorithms == {| class="wikitable sort...")
 
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 10: Line 10:
== Parameters ==  
== Parameters ==  


No parameters found.
$n$: number of vertices
 
$m$: number of edges
 
$k$: size of vertex cover


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 20: Line 24:
|-
|-


| [[Brute force (backtracking search) (The Vertex Cover Problem The Vertex Cover Problem)|Brute force (backtracking search)]] || 1940 || $O({2}^k n^O({1})$) || $O(k)$ auxiliary || Exact || Deterministic ||   
| [[Brute force (backtracking search) (The Vertex Cover Problem The Vertex Cover Problem)|Brute force (backtracking search)]] || 1940 || $O({2}^k n^O({1})$) || $O(k)$ || Exact || Deterministic ||   
|-
|-
| [[Sam Buss  (The Vertex Cover Problem The Vertex Cover Problem)|Sam Buss ]] || 1993 || $O(kn + {2}^k k^{({2}k + {2})})$ || $O(k^{2})$ auxiliary? || Exact || Deterministic || [http://bud.cs.uky.edu/~goldsmit/papers/NondetWithinP.pdf Time]
| [[Sam Buss  (The Vertex Cover Problem The Vertex Cover Problem)|Sam Buss ]] || 1993 || $O(kn + {2}^k k^{({2}k + {2})})$ || $O(k^{2})$? || Exact || Deterministic || [http://bud.cs.uky.edu/~goldsmit/papers/NondetWithinP.pdf Time]
|-
|-
| [[Chen; I. Kanj; and W. Jia. (The Vertex Cover Problem The Vertex Cover Problem)|Chen; I. Kanj; and W. Jia.]] || 2001 || $O(kn + {1.2852}^k)$ || $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??) || Exact || Deterministic || [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.4800&rep=rep1&type=pdf Time]
| [[Chen; I. Kanj; and W. Jia. (The Vertex Cover Problem The Vertex Cover Problem)|Chen; I. Kanj; and W. Jia.]] || 2001 || $O(kn + {1.2852}^k)$ || $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??) || Exact || Deterministic || [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.4800&rep=rep1&type=pdf Time]
Line 29: Line 33:
|-
|-
| [[Chen; I. Kanj; and W. Jia. (The Vertex Cover Problem The Vertex Cover Problem)|Chen; I. Kanj; and W. Jia.]] || 2006 || $O({1.2738}^k+ kn)$ || $O(poly(n))$ || Exact || Deterministic || [https://www.cs.lafayette.edu/~gexia/research/mfcs06.pdf Time & Space]
| [[Chen; I. Kanj; and W. Jia. (The Vertex Cover Problem The Vertex Cover Problem)|Chen; I. Kanj; and W. Jia.]] || 2006 || $O({1.2738}^k+ kn)$ || $O(poly(n))$ || Exact || Deterministic || [https://www.cs.lafayette.edu/~gexia/research/mfcs06.pdf Time & Space]
|-
| [[J. Chen; L. Liu; and W. Jia. (The Vertex Cover Problem, Degrees Bounded By 3 The Vertex Cover Problem)|J. Chen; L. Liu; and W. Jia.]] || 2000 || $O(k*{1.2192}^k)$ || $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??) || Exact || Deterministic || [https://onlinelibrary-wiley-com.ezproxy.canberra.edu.au/doi/abs/10.1002/1097-0037(200007)35:4%3C253::AID-NET3%3E3.0.CO;2-K Time]
|-
|-
| [[Balasubramanian; Fellows (The Vertex Cover Problem The Vertex Cover Problem)|Balasubramanian; Fellows]] || 1996 || $O(kn + ({1.324718})$^k * k^{2}) || $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??) || Exact || Deterministic || [https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.711.8844 Time]
| [[Balasubramanian; Fellows (The Vertex Cover Problem The Vertex Cover Problem)|Balasubramanian; Fellows]] || 1996 || $O(kn + ({1.324718})$^k * k^{2}) || $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??) || Exact || Deterministic || [https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.711.8844 Time]
Line 49: Line 55:
|-
|-
|}
|}
== Time Complexity Graph ==
[[File:The Vertex Cover Problem - Time.png|1000px]]

Latest revision as of 09:09, 28 April 2023

Description

A vertex cover of a graph $G$ is a set $C$ of vertices such that every edge of $G$ has at least one endpoint in $C$. The vertex cover problem is to find a minimum-size vertex cover in a given graph $G$.

Related Problems

Subproblem: The Vertex Cover Problem, Degrees Bounded By 3

Parameters

$n$: number of vertices

$m$: number of edges

$k$: size of vertex cover

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Brute force (backtracking search) 1940 $O({2}^k n^O({1})$) $O(k)$ Exact Deterministic
Sam Buss 1993 $O(kn + {2}^k k^{({2}k + {2})})$ $O(k^{2})$? Exact Deterministic Time
Chen; I. Kanj; and W. Jia. 2001 $O(kn + {1.2852}^k)$ $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??) Exact Deterministic Time
Chandran and F. Grandoni 2004 $O(min({1.2759}^k k^{1.5}, {1.2745}^k k^{4}) + kn)$ $O(min({1.2759}^k k^{1.5}, {1.2745}^k k^{4}) + kn)$ but exponential Exact Deterministic Time & Space
Chen; I. Kanj; and W. Jia. 2006 $O({1.2738}^k+ kn)$ $O(poly(n))$ Exact Deterministic Time & Space
J. Chen; L. Liu; and W. Jia. 2000 $O(k*{1.2192}^k)$ $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??) Exact Deterministic Time
Balasubramanian; Fellows 1996 $O(kn + ({1.324718})$^k * k^{2}) $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??) Exact Deterministic Time
Papadimitriou and M Yannakakis 1996 $O({3}^k n)$ $O(k)$ auxiliary? Exact Deterministic Time
Niedermeier, Rossmanith 1999 $O(kn + {1.29175}^k k^{2})$. $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??) Exact Deterministic Time
Downey 1998 $O(kn + {1.31951}^k k^{2})$ $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??) Exact Deterministic Time
Exhaustive search 1940 $O(C(n, k)$) (i.e. (n, k) binomial coefficient) $O(k)$ auxiliary Exact Deterministic
Downey, Fellows 1995 $O(kn+{2}^k k^{2})$ $O(k^{2})$ auxiliary Exact Deterministic Time
Papadimitriou and M Yannakakis + Buss 1996 $O({3}^k k^{2}+kn)$ $O(k^{2})$ auxiliary? Exact Deterministic Time
Stege, Fellows 1999 $O(kn+max(({1.25542})$^k k^{2}, ({1.2906})^k k) $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??) Exact Deterministic Time
Stege, Fellows + Interleaving method (Niedermeier, Rossmanith) 2000 $O(kn+({1.2906})$^k) $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??) Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination