Lossy Compression: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:Lossy Compression (Data Compression)}} == Description == The reduction or ideally elimination of redundancies in the original data to result in smaller required storage space is the goal of every compression scheme. There are two categories of data compression: lossy and lossless. Lossy compression is achieved by only discarding the redundancies and out of human perception information and getting rid of those extra bits. == Related Problems == Relat...")
 
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 12: Line 12:
== Parameters ==  
== Parameters ==  


No parameters found.
$n$: number of items in input series of data


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 28: Line 28:
| [[Maneva and M. J. Wainwright (Lossy Compression Data Compression)|Maneva and M. J. Wainwright]] || 2005 || $O(n^{2})$ || $O(n^{2})$ || Exact || Deterministic || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/1523592 Time]
| [[Maneva and M. J. Wainwright (Lossy Compression Data Compression)|Maneva and M. J. Wainwright]] || 2005 || $O(n^{2})$ || $O(n^{2})$ || Exact || Deterministic || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/1523592 Time]
|-
|-
| [[ Ciliberti; Mézard (Lossy Compression Data Compression)| Ciliberti; Mézard]] || 2005 || $O(n^{2})$ || || Exact || Deterministic || [https://arxiv.org/abs/cond-mat/0504509 Time]
| [[ Ciliberti; Mézard (Lossy Compression Data Compression)| Ciliberti; Mézard]] || 2005 || $O(n^{2})$ || $O(n^{2})$? || Exact || Deterministic || [https://arxiv.org/abs/cond-mat/0504509 Time]
|-
|-
| [[Brute force (Lossy Compression Data Compression)|Brute force]] || 1940 || $O(n*{2}^n)$ || || Exact || Deterministic ||   
| [[Brute force (Lossy Compression Data Compression)|Brute force]] || 1940 || $O(n*{2}^n)$ || $O(n*{2}^n)$? || Exact || Deterministic ||   
|-
|-
| [[Matsunaga; Yamamoto (Lossy Compression Data Compression)|Matsunaga; Yamamoto]] || 2003 || $O(n*{2}^n)$ || exp(n) || Exact || Deterministic || [https://doi-org.ezproxy.canberra.edu.au/10.1109/TIT.2003.815805 Time & Space]
| [[Matsunaga; Yamamoto (Lossy Compression Data Compression)|Matsunaga; Yamamoto]] || 2003 || $O(n*{2}^n)$ || exp(n) || Exact || Deterministic || [https://doi-org.ezproxy.canberra.edu.au/10.1109/TIT.2003.815805 Time & Space]
|-
|-
| [[Sun; M. Shao; J. Chen; K. Wong; and X. Wu (Lossy Compression Data Compression)|Sun; M. Shao; J. Chen; K. Wong; and X. Wu]] || 2010 || $O(n*{2}^n)$ || || Exact || Deterministic || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/5474629/ Time]
| [[Sun; M. Shao; J. Chen; K. Wong; and X. Wu (Lossy Compression Data Compression)|Sun; M. Shao; J. Chen; K. Wong; and X. Wu]] || 2010 || $O(kmn)$? || $O(kmn)$? || Exact || Deterministic || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/5474629/ Time]
|-
|-
| [[Miyake 2006 (Lossy Compression Data Compression)|Miyake]] || 2006 || $O(n*{2}^n)$ || || Exact || Deterministic || [https://www.semanticscholar.org/paper/Lossy-Data-Compression-over-Zq-by-LDPC-Code-Miyake/652f0438118898b63126f7261ec4cd2002ff0e0b Time]
| [[Miyake 2006 (Lossy Compression Data Compression)|Miyake]] || 2006 || $O(n*{2}^n)$ || $O({2}^n)$ || Exact || Deterministic || [https://www.semanticscholar.org/paper/Lossy-Data-Compression-over-Zq-by-LDPC-Code-Miyake/652f0438118898b63126f7261ec4cd2002ff0e0b Time]
|-
|-
| [[Martinian and M. J. Wainwright (Lossy Compression Data Compression)|Martinian and M. J. Wainwright]] || 2006 || $O(n*{2}^n)$ || || Exact || Deterministic || [https://arxiv.org/abs/cs/0602046 Time]
| [[Martinian and M. J. Wainwright (Lossy Compression Data Compression)|Martinian and M. J. Wainwright]] || 2006 || $O(n*{2}^n)$ || $O(mn+mk)$? || Exact || Deterministic || [https://arxiv.org/abs/cs/0602046 Time]
|-
|-
| [[Jalali and T. Weissman (Lossy Compression Data Compression)|Jalali and T. Weissman]] || 2008 || $O(n)$ || $O(n)$? || Exact || Deterministic || [https://web.stanford.edu/~tsachy/pdf_files/Lossy%20Source%20Coding%20via%20Markov%20Chain%20Monte%20Carlo.pdf Time]
| [[Jalali and T. Weissman (Lossy Compression Data Compression)|Jalali and T. Weissman]] || 2008 || $O(n)$ || $O(n)$? || Exact || Deterministic || [https://web.stanford.edu/~tsachy/pdf_files/Lossy%20Source%20Coding%20via%20Markov%20Chain%20Monte%20Carlo.pdf Time]
|-
|-
| [[Jalali; A. Montanari; and T. Weissman (Lossy Compression Data Compression)|Jalali; A. Montanari; and T. Weissman]] || 2010 || $O(n)$ || || Exact || Deterministic || [https://authors.library.caltech.edu/17983/1/Jalali2010p7459Ieee_T_Inform_Theory.pdf Time]
| [[Jalali; A. Montanari; and T. Weissman (Lossy Compression Data Compression)|Jalali; A. Montanari; and T. Weissman]] || 2010 || $O(n)$ || $O(n)$? || Exact || Deterministic || [https://authors.library.caltech.edu/17983/1/Jalali2010p7459Ieee_T_Inform_Theory.pdf Time]
|-
|-
| [[Korada and R. Urbanke; (Lossy Compression Data Compression)|Korada and R. Urbanke;]] || 2010 || $O(n*{2}^n)$ || $O(N)$ || Exact || Deterministic || [https://arxiv.org/pdf/0903.0307.pdf Time]
| [[Korada and R. Urbanke; (Lossy Compression Data Compression)|Korada and R. Urbanke;]] || 2010 || $O(n*{2}^n)$ || $O(N)$ || Exact || Deterministic || [https://arxiv.org/pdf/0903.0307.pdf Time]
Line 48: Line 48:
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:Data Compression - Lossy Compression - Time.png|1000px]]
[[File:Data Compression - Lossy Compression - Time.png|1000px]]
== Space Complexity graph ==
[[File:Data Compression - Lossy Compression - Space.png|1000px]]
== Pareto Decades graph ==
[[File:Data Compression - Lossy Compression - Pareto Frontier.png|1000px]]

Latest revision as of 09:09, 28 April 2023

Description

The reduction or ideally elimination of redundancies in the original data to result in smaller required storage space is the goal of every compression scheme. There are two categories of data compression: lossy and lossless.

Lossy compression is achieved by only discarding the redundancies and out of human perception information and getting rid of those extra bits.

Related Problems

Related: Lossless Compression

Parameters

$n$: number of items in input series of data

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Gupta; Verdu 2009 $O(n^{2} log^{3} n)$ $O(n)$ Exact Deterministic Time
Discrete Cosine Transform 1974 $O(n^{2})$ $O(n)$ Exact Deterministic Time
Maneva and M. J. Wainwright 2005 $O(n^{2})$ $O(n^{2})$ Exact Deterministic Time
Ciliberti; Mézard 2005 $O(n^{2})$ $O(n^{2})$? Exact Deterministic Time
Brute force 1940 $O(n*{2}^n)$ $O(n*{2}^n)$? Exact Deterministic
Matsunaga; Yamamoto 2003 $O(n*{2}^n)$ exp(n) Exact Deterministic Time & Space
Sun; M. Shao; J. Chen; K. Wong; and X. Wu 2010 $O(kmn)$? $O(kmn)$? Exact Deterministic Time
Miyake 2006 $O(n*{2}^n)$ $O({2}^n)$ Exact Deterministic Time
Martinian and M. J. Wainwright 2006 $O(n*{2}^n)$ $O(mn+mk)$? Exact Deterministic Time
Jalali and T. Weissman 2008 $O(n)$ $O(n)$? Exact Deterministic Time
Jalali; A. Montanari; and T. Weissman 2010 $O(n)$ $O(n)$? Exact Deterministic Time
Korada and R. Urbanke; 2010 $O(n*{2}^n)$ $O(N)$ Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination