1D Maximum Subarray: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:1D Maximum Subarray (Maximum Subarray Problem)}} == Description == Given an array $A$ of length $n$, find $i, j$ with $1\leq i \leq j \leq n$ maximizing $\sum^j_{x=i} A(x)$, that is, find a contiguous subarray of $A$ of maximum sum == Related Problems == Generalizations: Maximum Subarray Related: 2D Maximum Subarray, Maximum Square Subarray == Parameters == <pre>n: length of array</pre> == Table of Algorithms == {| class="wikitable...")
 
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 12: Line 12:
== Parameters ==  
== Parameters ==  


<pre>n: length of array</pre>
$n$: length of array


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 22: Line 22:
|-
|-


| [[Brute Force (1D Maximum Subarray Maximum Subarray Problem)|Brute Force]] || 1977 || $O(n^{3})$ || $O({1})$ auxiliary || Exact || Deterministic ||   
| [[Brute Force (1D Maximum Subarray Maximum Subarray Problem)|Brute Force]] || 1977 || $O(n^{3})$ || $O({1})$ || Exact || Deterministic ||   
|-
|-
| [[Grenander (1D Maximum Subarray Maximum Subarray Problem)|Grenander]] || 1977 || $O(n^{2})$ || $O(n)$ || Exact || Deterministic ||   
| [[Grenander (1D Maximum Subarray Maximum Subarray Problem)|Grenander]] || 1977 || $O(n^{2})$ || $O(n)$ || Exact || Deterministic ||   
|-
|-
| [[Faster Brute Force (via x(L:U) = x(L:U-1)+x(U)) (1D Maximum Subarray Maximum Subarray Problem)|Faster Brute Force (via x(L:U) = x(L:U-1)+x(U))]] || 1977 || $O(n^{2})$ || $O({1})$ auxiliary || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/358234.381162 Time]
| [[Faster Brute Force (via x(L:U) = x(L:U-1)+x(U)) (1D Maximum Subarray Maximum Subarray Problem)|Faster Brute Force (via x(L:U) = x(L:U-1)+x(U))]] || 1977 || $O(n^{2})$ || $O({1})$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/358234.381162 Time]
|-
|-
| [[Shamos (1D Maximum Subarray Maximum Subarray Problem)|Shamos]] || 1978 || $O(nlogn)$ || $O(log n)$ auxiliary || Exact || Deterministic ||   
| [[Shamos (1D Maximum Subarray Maximum Subarray Problem)|Shamos]] || 1978 || $O(n \log n)$ || $O(\log n)$ || Exact || Deterministic ||   
|-
|-
| [[Kadane's Algorithm (1D Maximum Subarray Maximum Subarray Problem)|Kadane's Algorithm]] || 1982 || $O(n)$ || $O({1})$ auxiliary || Exact || Deterministic ||   
| [[Kadane's Algorithm (1D Maximum Subarray Maximum Subarray Problem)|Kadane's Algorithm]] || 1982 || $O(n)$ || $O({1})$ auxiliary || Exact || Deterministic ||   
|-
|-
| [[Perumalla and Deo (1D Maximum Subarray Maximum Subarray Problem)|Perumalla and Deo]] || 1995 || $O(log n)$ || $O(n)$ auxiliary || Exact || Parallel || [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.1291&rep=rep1&type=pdf Time]
| [[Perumalla and Deo (1D Maximum Subarray Maximum Subarray Problem)|Perumalla and Deo]] || 1995 || $O(\log n)$ || $O(n)$ auxiliary || Exact || Parallel || [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.1291&rep=rep1&type=pdf Time]
|-
|-
| [[Gries (1D Maximum Subarray Maximum Subarray Problem)|Gries]] || 1982 || $O(n)$ || $O({1})$ auxiliary || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0167642383900151?via%3Dihub Time]
| [[Gries (1D Maximum Subarray Maximum Subarray Problem)|Gries]] || 1982 || $O(n)$ || $O({1})$ auxiliary || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0167642383900151?via%3Dihub Time]
Line 38: Line 38:
| [[Bird (1D Maximum Subarray Maximum Subarray Problem)|Bird]] || 1989 || $O(n)$ || $O({1})$ auxiliary || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/10.1093/comjnl/32.2.122 Time]
| [[Bird (1D Maximum Subarray Maximum Subarray Problem)|Bird]] || 1989 || $O(n)$ || $O({1})$ auxiliary || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/10.1093/comjnl/32.2.122 Time]
|-
|-
| [[Ferreira, Camargo, Song (1D Maximum Subarray Maximum Subarray Problem)|Ferreira, Camargo, Song]] || 2014 || $O(log n)$ || $O(n)$ auxiliary || Exact || Parallel || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/6972008 Time]
| [[Ferreira, Camargo, Song (1D Maximum Subarray Maximum Subarray Problem)|Ferreira, Camargo, Song]] || 2014 || $O(\log n)$ || $O(n)$ auxiliary || Exact || Parallel || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/document/6972008 Time]
|-
|-
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:Maximum Subarray Problem - 1D Maximum Subarray - Time.png|1000px]]
[[File:Maximum Subarray Problem - 1D Maximum Subarray - Time.png|1000px]]
== Space Complexity graph ==
[[File:Maximum Subarray Problem - 1D Maximum Subarray - Space.png|1000px]]
== Pareto Decades graph ==
[[File:Maximum Subarray Problem - 1D Maximum Subarray - Pareto Frontier.png|1000px]]

Latest revision as of 09:10, 28 April 2023

Description

Given an array $A$ of length $n$, find $i, j$ with $1\leq i \leq j \leq n$ maximizing $\sum^j_{x=i} A(x)$, that is, find a contiguous subarray of $A$ of maximum sum

Related Problems

Generalizations: Maximum Subarray

Related: 2D Maximum Subarray, Maximum Square Subarray

Parameters

$n$: length of array

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Brute Force 1977 $O(n^{3})$ $O({1})$ Exact Deterministic
Grenander 1977 $O(n^{2})$ $O(n)$ Exact Deterministic
Faster Brute Force (via x(L:U) = x(L:U-1)+x(U)) 1977 $O(n^{2})$ $O({1})$ Exact Deterministic Time
Shamos 1978 $O(n \log n)$ $O(\log n)$ Exact Deterministic
Kadane's Algorithm 1982 $O(n)$ $O({1})$ auxiliary Exact Deterministic
Perumalla and Deo 1995 $O(\log n)$ $O(n)$ auxiliary Exact Parallel Time
Gries 1982 $O(n)$ $O({1})$ auxiliary Exact Deterministic Time
Bird 1989 $O(n)$ $O({1})$ auxiliary Exact Deterministic Time
Ferreira, Camargo, Song 2014 $O(\log n)$ $O(n)$ auxiliary Exact Parallel Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination