Diameter 2 vs 3: Difference between revisions
Jump to navigation
Jump to search
(Created page with "{{DISPLAYTITLE:Diameter 2 vs 3 (Graph Metrics)}} == Description == Given a graph $G = (V, E)$, distinguish between diameter 2 and diameter 3. In other words, approximate diameter within a factor of $4/3-\epsilon$. == Related Problems == Generalizations: Approximate Diameter Related: Median, Radius, Diameter, Diameter 3 vs 7, Decremental Diameter, 1-sensitive (4/3)-approximate decremental diameter, 1-sensitive decremental diameter, ...") |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 12: | Line 12: | ||
== Parameters == | == Parameters == | ||
$n$: number of nodes | |||
m: number of edges | |||
$m$: number of edges | |||
== Table of Algorithms == | == Table of Algorithms == |
Latest revision as of 07:53, 10 April 2023
Description
Given a graph $G = (V, E)$, distinguish between diameter 2 and diameter 3. In other words, approximate diameter within a factor of $4/3-\epsilon$.
Related Problems
Generalizations: Approximate Diameter
Related: Median, Radius, Diameter, Diameter 3 vs 7, Decremental Diameter, 1-sensitive (4/3)-approximate decremental diameter, 1-sensitive decremental diameter, constant sensitivity (4/3)-approximate incremental diameter, 1-sensitive (4/3)-approximate decremental eccentricity
Parameters
$n$: number of nodes
$m$: number of edges
Table of Algorithms
Currently no algorithms in our database for the given problem.
Reductions FROM Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
OV | If: to-time: $O(N^{({2}-\epsilon)})$ where $N = nd$ and $V,E = O(n)$ Then: from-time: $O((nd)^{({2}-\epsilon)}) \leq n^{({2}-\epsilon)} poly(d)$ where {2} sets of $n$ $d$-dimensional vectors |
2013 | https://people-csail-mit-edu.ezproxy.canberra.edu.au/virgi/diam.pdf | link |