Matrix Multiplication: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
== Parameters == | == Parameters == | ||
n: dimension of square matrix | $n$: dimension of square matrix | ||
== Table of Algorithms == | == Table of Algorithms == | ||
Line 42: | Line 42: | ||
| [[Bini's algorithm (Matrix Multiplication Matrix Product)|Bini's algorithm]] || 1979 || $O(n^{2.{779}9})$ || $O(n^{2})$ || $O(n logn)$ error || Deterministic || [https://doi-org.ezproxy.canberra.edu.au/10.1016/0020-0190(79)90113-3 Time] | | [[Bini's algorithm (Matrix Multiplication Matrix Product)|Bini's algorithm]] || 1979 || $O(n^{2.{779}9})$ || $O(n^{2})$ || $O(n logn)$ error || Deterministic || [https://doi-org.ezproxy.canberra.edu.au/10.1016/0020-0190(79)90113-3 Time] | ||
|- | |- | ||
| [[Schonhage's algorithm (Matrix Multiplication Matrix Product)|Schonhage's algorithm]] || 1980 || $O(n^{({3}* | | [[Schonhage's algorithm (Matrix Multiplication Matrix Product)|Schonhage's algorithm]] || 1980 || $O(n^{({3}*\log {52}/l \og {110})}) ~ O(n^{2.{521}8})$ || $O(n^{2})$ || ? || Deterministic || [https://epubs-siam-org.ezproxy.canberra.edu.au/doi/abs/10.1137/0210032 Time] | ||
|- | |||
| [[Output-Sensitive Quantum BMM (Boolean Matrix Multiplication Matrix Product)|Output-Sensitive Quantum BMM]] || 2018 || O*( \min \{n^{1/3} L^{17/{3}0}, n^{1.5} L^{1/4}\}) || || Exact || Quantum || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/3186893, Time] | |||
|- | |||
| [[ (Boolean Matrix Multiplication (Combinatorial) Matrix Product)| ]] || 2018 || $O(n^{3} / log^{2.25} n)$ || || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/3186893, Time] | |||
|- | |||
| [[O'Neil 1973 (Boolean Matrix Multiplication Matrix Product)|O'Neil]] || 1973 || $O(n^{3})$ || || Exact || Deterministic || [https://core.ac.uk/download/pdf/82467126.pdf Time] | |||
|- | |||
| [[Method of Four Russians (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Method of Four Russians]] || 1970 || $O(n^{3}/(log n)$^{2}) || || Exact || Deterministic || [https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=On+economical+construction+of+the+transitive+closure+of+an+oriented+graph.&btnG= Time] | |||
|- | |||
| [[Bansal, Williams (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Bansal, Williams]] || 2009 || $O(n^{3} * (log log n)$^{2} / log^{2.25} n) || || Exact || Randomized || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/abstract/document/5438580 Time] | |||
|- | |||
| [[Bansal, Williams (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Bansal, Williams]] || 2009 || $O(n^{3} * (log log n)$^{2} / (w * (log n)^{7}/{6})) || || Exact || Randomized || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/abstract/document/5438580 Time] | |||
|- | |||
| [[Chan (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Chan]] || 2015 || $O(n^{3} * (log log n)$^{3} / log^{3} n) || || Exact || Deterministic || [https://epubs-siam-org.ezproxy.canberra.edu.au/doi/abs/10.1137/1.9781611973730.16 Time] | |||
|- | |||
| [[Chan (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Chan]] || 2015 || $O(n^{3} * (log w)$^{3} / (w * log^{2} n)) || || Exact || Deterministic || [https://epubs-siam-org.ezproxy.canberra.edu.au/doi/abs/10.1137/1.9781611973730.16 Time] | |||
|- | |||
| [[Yu (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Yu]] || 2015 || $O(n^{3}*poly(log log n)$/log^{4} n) || || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/S0890540118300099 Time] | |||
|- | |- | ||
|} | |} | ||
== Time Complexity | == Time Complexity Graph == | ||
[[File:Matrix Product - Matrix Multiplication - Time.png|1000px]] | [[File:Matrix Product - Matrix Multiplication - Time.png|1000px]] | ||
== References/Citation == | == References/Citation == | ||
https://arxiv.org/pdf/2010.05846.pdf | https://arxiv.org/pdf/2010.05846.pdf |
Latest revision as of 09:05, 28 April 2023
Description
Matrix Multiplication or Matrix Product is a binary operation that produces a matrix from two matrices with entries in a field; or; more generally; in a ring or even a semiring.
Related Problems
Subproblem: Boolean Matrix Multiplication, Matrix Product Verification
Related: Boolean Matrix Multiplication (Combinatorial), Matrix Product Verification, Distance Product, $(\min, \leq)$ Product
Parameters
$n$: dimension of square matrix
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Naive algorithm | 1940 | $O(n^{3})$ | $O({1})$ auxiliary | Exact | Deterministic | |
Strassen's algorithm | 1969 | $O(n^{(log7/log2)}) ~ O(n^{2.{80}7})$ | $O(n^{2})$ | Exact | Deterministic | Time & Space |
Pan's algorithm | 1978 | $O(n^{(log({143640})/log({70}))}) ~ O(n^{2.{79}5})$ | $O(n^{2})$ | Exact | Deterministic | Time |
Romani's algorithm | 1981 | $O(n^{2.{5166}5})$ | $O(n^{2})$ | Exact | Deterministic | Time |
Coppersmith–Winograd algorithm | 1981 | $O(n^{2.{49554}8})$ | $O(n^{2})$ | Exact | Deterministic | Time |
Strassen's algorithm | 1986 | $O(n^{(log54/log5)}) ~ O(n^{({2.4785})})$ | $O(n^{2})$ | Exact | Deterministic | Time |
Coppersmith–Winograd algorithm | 1990 | $O(n^{2.{375}5})$ | $O(n^{2})$ | Exact | Deterministic | Time |
Vassilevska Williams | 2014 | $O(n^{2.{37287}3})$ | $O(n^{2})$ | Exact | Deterministic | Time |
François Le Gall | 2014 | $O(n^{2.{372863}9})$ | $O(n^{2})$ | Exact | Deterministic | Time |
Bini's algorithm | 1979 | $O(n^{2.{779}9})$ | $O(n^{2})$ | $O(n logn)$ error | Deterministic | Time |
Schonhage's algorithm | 1980 | $O(n^{({3}*\log {52}/l \og {110})}) ~ O(n^{2.{521}8})$ | $O(n^{2})$ | ? | Deterministic | Time |
Output-Sensitive Quantum BMM | 2018 | O*( \min \{n^{1/3} L^{17/{3}0}, n^{1.5} L^{1/4}\}) | Exact | Quantum | Time | |
2018 | $O(n^{3} / log^{2.25} n)$ | Exact | Deterministic | Time | ||
O'Neil | 1973 | $O(n^{3})$ | Exact | Deterministic | Time | |
Method of Four Russians | 1970 | $O(n^{3}/(log n)$^{2}) | Exact | Deterministic | Time | |
Bansal, Williams | 2009 | $O(n^{3} * (log log n)$^{2} / log^{2.25} n) | Exact | Randomized | Time | |
Bansal, Williams | 2009 | $O(n^{3} * (log log n)$^{2} / (w * (log n)^{7}/{6})) | Exact | Randomized | Time | |
Chan | 2015 | $O(n^{3} * (log log n)$^{3} / log^{3} n) | Exact | Deterministic | Time | |
Chan | 2015 | $O(n^{3} * (log w)$^{3} / (w * log^{2} n)) | Exact | Deterministic | Time | |
Yu | 2015 | $O(n^{3}*poly(log log n)$/log^{4} n) | Exact | Deterministic | Time |
Time Complexity Graph
Error creating thumbnail: Unable to save thumbnail to destination