Boolean Matrix Multiplication: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 14: Line 14:
== Parameters ==  
== Parameters ==  


n: dimension of square matrix
$n$: dimension of square matrix


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 25: Line 25:


| [[Output-Sensitive Quantum BMM (Boolean Matrix Multiplication Matrix Product)|Output-Sensitive Quantum BMM]] || 2018 || O*( \min \{n^{1/3} L^{17/{3}0}, n^{1.5} L^{1/4}\}) ||  || Exact || Quantum || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/3186893, Time]
| [[Output-Sensitive Quantum BMM (Boolean Matrix Multiplication Matrix Product)|Output-Sensitive Quantum BMM]] || 2018 || O*( \min \{n^{1/3} L^{17/{3}0}, n^{1.5} L^{1/4}\}) ||  || Exact || Quantum || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/3186893, Time]
|-
| [[ (Boolean Matrix Multiplication (Combinatorial) Matrix Product)| ]] || 2018 || $O(n^{3} / log^{2.25} n)$ ||  || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/3186893, Time]
|-
|-
| [[O'Neil 1973 (Boolean Matrix Multiplication Matrix Product)|O'Neil]] || 1973 || $O(n^{3})$ ||  || Exact || Deterministic || [https://core.ac.uk/download/pdf/82467126.pdf Time]
| [[O'Neil 1973 (Boolean Matrix Multiplication Matrix Product)|O'Neil]] || 1973 || $O(n^{3})$ ||  || Exact || Deterministic || [https://core.ac.uk/download/pdf/82467126.pdf Time]
|-
| [[Method of Four Russians (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Method of Four Russians]] || 1970 || $O(n^{3}/(log n)$^{2}) ||  || Exact || Deterministic || [https://scholar.google.com/scholar?hl=en&as_sdt=0%2C22&q=On+economical+construction+of+the+transitive+closure+of+an+oriented+graph.&btnG= Time]
|-
| [[Bansal, Williams (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Bansal, Williams]] || 2009 || $O(n^{3} * (log log n)$^{2} / log^{2.25} n) ||  || Exact || Randomized || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/abstract/document/5438580 Time]
|-
| [[Bansal, Williams (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Bansal, Williams]] || 2009 || $O(n^{3} * (log log n)$^{2} / (w * (log n)^{7}/{6})) ||  || Exact || Randomized || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/abstract/document/5438580 Time]
|-
| [[Chan (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Chan]] || 2015 || $O(n^{3} * (log log n)$^{3} / log^{3} n) ||  || Exact || Deterministic || [https://epubs-siam-org.ezproxy.canberra.edu.au/doi/abs/10.1137/1.9781611973730.16 Time]
|-
| [[Chan (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Chan]] || 2015 || $O(n^{3} * (log w)$^{3} / (w * log^{2} n)) ||  || Exact || Deterministic || [https://epubs-siam-org.ezproxy.canberra.edu.au/doi/abs/10.1137/1.9781611973730.16 Time]
|-
| [[Yu (Boolean Matrix Multiplication (Combinatorial) Matrix Product)|Yu]] || 2015 || $O(n^{3}*poly(log log n)$/log^{4} n) ||  || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/S0890540118300099 Time]
|-
|-
|}
|}

Latest revision as of 08:18, 10 April 2023

Description

Matrix multiplication of two boolean matrices (i.e. where all entries are in $F_2$ and addition is mod 2)

Related Problems

Generalizations: Matrix Multiplication

Subproblem: Boolean Matrix Multiplication (Combinatorial)

Related: Matrix Product Verification, Distance Product, $(\min, \leq)$ Product

Parameters

$n$: dimension of square matrix

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Output-Sensitive Quantum BMM 2018 O*( \min \{n^{1/3} L^{17/{3}0}, n^{1.5} L^{1/4}\}) Exact Quantum Time
2018 $O(n^{3} / log^{2.25} n)$ Exact Deterministic Time
O'Neil 1973 $O(n^{3})$ Exact Deterministic Time
Method of Four Russians 1970 $O(n^{3}/(log n)$^{2}) Exact Deterministic Time
Bansal, Williams 2009 $O(n^{3} * (log log n)$^{2} / log^{2.25} n) Exact Randomized Time
Bansal, Williams 2009 $O(n^{3} * (log log n)$^{2} / (w * (log n)^{7}/{6})) Exact Randomized Time
Chan 2015 $O(n^{3} * (log log n)$^{3} / log^{3} n) Exact Deterministic Time
Chan 2015 $O(n^{3} * (log w)$^{3} / (w * log^{2} n)) Exact Deterministic Time
Yu 2015 $O(n^{3}*poly(log log n)$/log^{4} n) Exact Deterministic Time

Reductions TO Problem

Problem Implication Year Citation Reduction
CFG Parsing if: to-time: $O(gn^{3-\epsilon})$ for some $\epsilon > {0}$ where $g$ is the size of the CFG and $n$ is the size of the string
then: from-time: $O(n^{3-\epsilon/3})$ where $n \times n$ matrix
2002 https://arxiv.org/abs/cs/0112018 link
Independent Set Queries if: to-time: $O(n^{2} / \log^c n)$ to answer all subsequent batches of $\log n$ independent set queries from a graph that takes $O(n^k)$ time to preprocess for some $c,k > {0}$
then: from-time: $O(n^{3} / \log^{c+1} n)$
2018 https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/3186893, Theorem 6.5 link
2-sensitive incremental st-reach assume: BMM
then: combinatorial algorithms cannot solve target with preprocessing time $O(n^{3-\epsilon})$, and update and query times $O(n^{2-\epsilon})$ for any $\epsilon > {0}$
2017 https://arxiv.org/pdf/1703.01638.pdf link
1-sensitive incremental ss-reach assume: BMM
then: combinatorial algorithms cannot solve target with preprocessing time $O(n^{3-\epsilon})$, and update and query times $O(n^{2-\epsilon})$ for any $\epsilon > {0}$
2017 https://arxiv.org/pdf/1703.01638.pdf link
ap-reach assume: BMM
then: combinatorial algorithms cannot solve target with preprocessing time $O(n^{3-\epsilon})$, and update and query times $O(n^{2-\epsilon})$ for any $\epsilon > {0}$
2017 https://arxiv.org/pdf/1703.01638.pdf link
2-sensitive (7/5)-approximate st-shortest paths assume: BMM
then: combinatorial algorithms cannot solve target with preprocessing time $O(n^{3-\epsilon})$, and update and query times $O(n^{2-\epsilon})$ for any $\epsilon > {0}$ in undirected unweighted graphs
2017 https://arxiv.org/pdf/1703.01638.pdf link
1-sensitive (3/2)-approximate ss-shortest paths assume: BMM
then: combinatorial algorithms cannot solve target with preprocessing time $O(n^{3-\epsilon})$, and update and query times $O(n^{2-\epsilon})$ for any $\epsilon > {0}$ in undirected unweighted graphs
2017 https://arxiv.org/pdf/1703.01638.pdf link
(5/3)-approximate ap-shortest paths assume: BMM
then: combinatorial algorithms cannot solve target with preprocessing time $O(n^{3-\epsilon})$, and update and query times $O(n^{2-\epsilon})$ for any $\epsilon > {0}$
2017 https://arxiv.org/pdf/1703.01638.pdf link
1-sensitive (4/3)-approximate decremental diameter assume: BMM
then: combinatorial algorithms cannot solve target with preprocessing time $O(n^{3-\epsilon})$, and update and query times $O(n^{2-\epsilon})$ for any $\epsilon > {0}$ in undirected unweighted graphs
2017 https://arxiv.org/pdf/1703.01638.pdf link
1-sensitive (4/3)-approximate decremental eccentricity assume: BMM
then: combinatorial algorithms cannot solve target with preprocessing time $O(n^{3-\epsilon})$, and update and query times $O(n^{2-\epsilon})$ for any $\epsilon > {0}$
2017 https://arxiv.org/pdf/1703.01638.pdf link
1-sensitive decremental st-shortest paths assume: BMM
then: for directed unweighted graphs with $n$ vertices and $m \geq n$ edges require either $m^{1-o({1})}\sqrt{n}$ preprocessing time or $m^{1-o({1})}/\sqrt{n}$ query time for every function $m$ of $n$
2017 https://arxiv.org/pdf/1703.01638.pdf link

Reductions FROM Problem

Problem Implication Year Citation Reduction
CFG Parsing if: to-time: $O(n^{3-\epsilon})$ for some $\epsilon > {0}$ where $n \times n$ matrix
then: from-time: $O(gn^{3-\epsilon})$ where $g$ is the size of the CFG
1975 https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/S0022000075800468 link

References/Citation

https://arxiv.org/pdf/2010.05846.pdf