MaxSAT: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
== Parameters == | == Parameters == | ||
n: number of variables | $n$: number of variables | ||
== Table of Algorithms == | == Table of Algorithms == |
Latest revision as of 07:53, 10 April 2023
Description
Given an instance of SAT represented in Conjunctive Normal Form (CNF), compute an assignment to the variables that maximizes the number of satisfied clauses.
Related Problems
Generalizations: Conjunctive Normal Form SAT
Related: SAT, Disjunctive Normal Form SAT, 1-in-3SAT, Monotone 1-in-3SAT, Monotone Not-Exactly-1-in-3SAT, All-Equal-SAT, Not-All-Equal 3-SAT (NAE 3SAT), Monotone Not-All-Equal 3-SAT (Monotone NAE 3SAT), k-SAT, 2SAT, 3SAT, 3SAT-5, 4SAT, Monotone 3SAT, XOR-SAT, Horn SAT, Dual-Horn SAT, Renamable Horn
Parameters
$n$: number of variables
Table of Algorithms
Currently no algorithms in our database for the given problem.
Reductions TO Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
st-Maximum Flow | assume: SETH then: for any fixed constants $\epsilon > {0}$, $c_1,c_2 \in ({0},{1})$, on graphs with $n$ nodes $|S|=\tilde{\Theta}(n^{c_1})$, $|T|=\tilde{\Theta(n^{c_2})}$, $m=O(n)$ edges, and capacaties in $\{1,\cdots,n\}$, target cannot be solved in $O((|S|T|m)^{1-\epsilon})$ |
2018 | https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.1145/3212510 | link |
All-Pairs Maximum Flow | assume: SETH then: for any fixed $\epsilon > {0}$, in graphs with $n$ nodes, $m=O(n)$ edges, and capacities in $\{1,\cdots,n\}$ target cannot be solved in time $O((n^{2}m)^{1-\epsilon})$ |
2018 | https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.1145/3212510 | link |
All-Pairs Maximum Flow | assume: SETH then: for any fixed constants $\epsilon > {0}$, $c_1,c_2 \in ({0},{1})$, on graphs with $n$ nodes $|S|=\tilde{\Theta}(n^{c_1})$, $|T|=\tilde{\Theta(n^{c_2})}$, $m=O(n)$ edges, and capacaties in $\{1,\cdots,n\}$, target cannot be solved in $O((|S|T|m)^{1-\epsilon})$ |
2018 | https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.1145/3212510 | link |
st-Maximum Flow | assume: SETH then: for any fixed $\epsilon > {0}$, in graphs with $n$ nodes, $m=O(n)$ edges, and capacities in $\{1,\cdots,n\}$ target cannot be solved in time $O((n^{2}m)^{1-\epsilon})$ |
2018 | https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.1145/3212510 | link |
Maximum Local Edge Connectivity | assume: SETH then: for any $\epsilon > {0}$, in graphs with $n$ nodes and $\tilde{O}(n)$ edges, target cannot be solved in time $O(n^{2-\epsilon})$ |
2018 | https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.1145/3212510 | link |