Functional Dependency Inference Problem: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 12: Line 12:
== Parameters ==  
== Parameters ==  


No parameters found.
$n$: number of attributes
 
$p$: number of tuples/rows/data points


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 22: Line 24:
|-
|-


| [[Brute force algorithm (Functional Dependency Inference Problem Dependency Inference Problem)|Brute force algorithm]] || 1967 || $O(n^{2} {2}^n p log p)$ || $O(n2^n)$? || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0166218X92900315 Time]
| [[Brute force algorithm (Functional Dependency Inference Problem Dependency Inference Problem)|Brute force algorithm]] || 1967 || $O(n^{2} {2}^n p \log p)$ || $O(n2^n)$? || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0166218X92900315 Time]
|-
|-
| [[Schlimmer (Functional Dependency Inference Problem Dependency Inference Problem)|Schlimmer]] || 1993 || $O(n {2}^n p)$ || $O({2}^n)$ || Exact || Deterministic || [https://www.aaai.org/Papers/Workshops/1993/WS-93-02/WS93-02-017.pdf Time]
| [[Schlimmer (Functional Dependency Inference Problem Dependency Inference Problem)|Schlimmer]] || 1993 || $O(n {2}^n p)$ || $O({2}^n)$ || Exact || Deterministic || [https://www.aaai.org/Papers/Workshops/1993/WS-93-02/WS93-02-017.pdf Time]
Line 31: Line 33:


[[File:Dependency Inference Problem - Functional Dependency Inference Problem - Time.png|1000px]]
[[File:Dependency Inference Problem - Functional Dependency Inference Problem - Time.png|1000px]]
== Space Complexity Graph ==
[[File:Dependency Inference Problem - Functional Dependency Inference Problem - Space.png|1000px]]
== Pareto Frontier Improvements Graph ==
[[File:Dependency Inference Problem - Functional Dependency Inference Problem - Pareto Frontier.png|1000px]]


== References/Citation ==  
== References/Citation ==  


https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0166218X92900315
https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0166218X92900315

Latest revision as of 09:09, 28 April 2023

Description

The functional dependency inference problem is to find a cover for the set of functional dependencies that hold in a given relation.

A functional dependency (abbr. FD), $f$, is a statement $f: X \rightarrow Y$ where $X$ and $Y$ are sets of attributes. If $R(X, Y, \ldots)$ is a relation on a set of attributes that contains $X$ and $Y$, then $R$ obeys the FD $f$ if every two tuples of $R$ which have the same projection on $X$ also have the same projection on $Y$. Given $f: X \rightarrow Y$, we say that $f$ is a functional dependency from $X$ to $Y$, that $Y$ is functionally dependent on $X$ or that $X$ functionally determines $Y$. From the definition it follows that for each pair of sets $X$ and $Y$ there is at most one functional dependency from $X$ to $Y$. Therefore, we usually omit the name of the FD and write $X \rightarrow Y$.

Related Problems

Related: Multivalued Dependency Inference Problem

Parameters

$n$: number of attributes

$p$: number of tuples/rows/data points

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Brute force algorithm 1967 $O(n^{2} {2}^n p \log p)$ $O(n2^n)$? Exact Deterministic Time
Schlimmer 1993 $O(n {2}^n p)$ $O({2}^n)$ Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

References/Citation

https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/0166218X92900315