APSP on Sparse Undirected Unweighted Graphs: Difference between revisions
(Created page with "{{DISPLAYTITLE:APSP on Sparse Undirected Unweighted Graphs (All-Pairs Shortest Paths (APSP))}} == Description == In this case, the graph $G=(V,E)$ that we consider is sparse ($m = O(n)$), is undirected, and is unweighted (or equivalently, has all unit weights). == Related Problems == Generalizations: APSP Related: APSP on Dense Directed Graphs with Arbitrary Weights, APSP on Dense Undirected Graphs with Arbitrary Weights, APSP on Geometrically Weighte...") |
No edit summary |
||
Line 12: | Line 12: | ||
== Parameters == | == Parameters == | ||
n: number of vertices | |||
m: number of edges | |||
m: number of edges | |||
== Table of Algorithms == | == Table of Algorithms == |
Revision as of 12:02, 15 February 2023
Description
In this case, the graph $G=(V,E)$ that we consider is sparse ($m = O(n)$), is undirected, and is unweighted (or equivalently, has all unit weights).
Related Problems
Generalizations: APSP
Related: APSP on Dense Directed Graphs with Arbitrary Weights, APSP on Dense Undirected Graphs with Arbitrary Weights, APSP on Geometrically Weighted Graphs, APSP on Dense Undirected Graphs with Positive Integer Weights, APSP on Sparse Directed Graphs with Arbitrary Weights, APSP on Sparse Undirected Graphs with Positive Integer Weights, APSP on Sparse Undirected Graphs with Arbitrary Weights, APSP on Dense Directed Unweighted Graphs, APSP on Dense Undirected Unweighted Graphs, APSP on Sparse Directed Unweighted Graphs, (5/3)-approximate ap-shortest paths
Parameters
n: number of vertices
m: number of edges
Table of Algorithms
Currently no algorithms in our database for the given problem.