CFG Parsing: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 26: | Line 26: | ||
|} | |} | ||
== Time Complexity | == Time Complexity Graph == | ||
[[File:CFG Problems - CFG Parsing - Time.png|1000px]] | [[File:CFG Problems - CFG Parsing - Time.png|1000px]] | ||
== Space Complexity | == Space Complexity Graph == | ||
[[File:CFG Problems - CFG Parsing - Space.png|1000px]] | [[File:CFG Problems - CFG Parsing - Space.png|1000px]] | ||
== Pareto | == Pareto Frontier Improvements Graph == | ||
[[File:CFG Problems - CFG Parsing - Pareto Frontier.png|1000px]] | [[File:CFG Problems - CFG Parsing - Pareto Frontier.png|1000px]] |
Revision as of 13:04, 15 February 2023
Description
Given a grammar $G$ and a string $s$, find the parse structure, or analysis, assigned to the string $s$ by the grammar $G$.
Related Problems
Related: CFG Recognition
Parameters
n: length of the given string
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Earley parser | 1968 | $O(n^{3})$ | $O(n^{2})$ | Exact | Deterministic | Time & Space |
GLR parser | 1974 | $O(n^{3})$ | $O(n^{3})$ | Exact | Deterministic | Time & Space |
Time Complexity Graph
Error creating thumbnail: Unable to save thumbnail to destination
Space Complexity Graph
Error creating thumbnail: Unable to save thumbnail to destination
Pareto Frontier Improvements Graph
Error creating thumbnail: Unable to save thumbnail to destination
Reductions TO Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
BMM | if: to-time: $O(n^{3-\epsilon})$ for some $\epsilon > {0}$ where $n \times n$ matrix then: from-time: $O(gn^{3-\epsilon})$ where $g$ is the size of the CFG |
1975 | https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/S0022000075800468 | link |
Reductions FROM Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
BMM | if: to-time: $O(gn^{3-\epsilon})$ for some $\epsilon > {0}$ where $g$ is the size of the CFG and $n$ is the size of the string then: from-time: $O(n^{3-\epsilon/3})$ where $n \times n$ matrix |
2002 | https://arxiv.org/abs/cs/0112018 | link |
References/Citation
https://link-springer-com.ezproxy.canberra.edu.au/chapter/10.1007%2F978-3-662-21545-6_18