Off-Line Lowest Common Ancestor: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 13: Line 13:
== Parameters ==  
== Parameters ==  


n: number of vertices
$n$: number of vertices


m: number of total number of operations (queries, links, and cuts)
$m$: number of total number of operations (queries, links, and cuts)


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 25: Line 25:
|-
|-


| [[Tarjan's off-line lowest common ancestors algorithm (Off-Line Lowest Common Ancestor Lowest Common Ancestor)|Tarjan's off-line lowest common ancestors algorithm]] || 1984 || $O(n+m)$ || $O(n)$ || Exact || Deterministic || [https://www.semanticscholar.org/paper/Fast-Algorithms-for-Finding-Nearest-Common-Harel-Tarjan/8867d059dda279b1aed4a0301e4e46f9daf65174 Time] & [https://www.cs.bgu.ac.il/~segal/PAPERS2/tarj.pdf Space]
| [[Tarjan's off-line lowest common ancestors algorithm (Off-Line Lowest Common Ancestor Lowest Common Ancestor)|Tarjan's off-line lowest common ancestors algorithm]] || 1984 || $O(n+m)$ || $O(n)$ || Exact || Deterministic || [https://www.semanticscholar.org/paper/Fast-Algorithms-for-Finding-Nearest-Common-Harel-Tarjan/8867d059dda279b1aed4a0301e4e46f9daf65174 Time & Space]
|-
|-
| [[Aho, Hopcroft, and Ullman (Offline) (Off-Line Lowest Common Ancestor Lowest Common Ancestor)|Aho, Hopcroft, and Ullman (Offline)]] || 1976 || $O(n+ m*alpha(m + n, n)$) where alpha is the inverse Ackermann function || $O(n)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/800125.804056 Time] & [https://www.cs.bgu.ac.il/~segal/PAPERS2/tarj.pdf Space]
| [[Aho, Hopcroft, and Ullman (Offline) (Off-Line Lowest Common Ancestor Lowest Common Ancestor)|Aho, Hopcroft, and Ullman (Offline)]] || 1976 || $O(n+ m*alpha(m + n, n)$) where alpha is the inverse Ackermann function || $O(n)$ || Exact || Deterministic || [https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/800125.804056 Time] & [https://www.cs.bgu.ac.il/~segal/PAPERS2/tarj.pdf Space]
Line 34: Line 34:


[[File:Lowest Common Ancestor - Off-Line Lowest Common Ancestor - Time.png|1000px]]
[[File:Lowest Common Ancestor - Off-Line Lowest Common Ancestor - Time.png|1000px]]
== Space Complexity Graph ==
[[File:Lowest Common Ancestor - Off-Line Lowest Common Ancestor - Space.png|1000px]]
== Time-Space Tradeoff ==
[[File:Lowest Common Ancestor - Off-Line Lowest Common Ancestor - Pareto Frontier.png|1000px]]

Latest revision as of 09:08, 28 April 2023

Description

Given a collection of rooted trees, answer queries of the form, "What is the nearest common ancestor of vertices $x$ and $y$?" In this version of the problem, the collection of trees is static and the entire sequence of queries is specified in advance.

Related Problems

Generalizations: Lowest Common Ancestor

Related: Lowest Common Ancestor with Static Trees, Lowest Common Ancestor with Linking Roots, Lowest Common Ancestor with Linking, Lowest Common Ancestors with Linking and Cutting

Parameters

$n$: number of vertices

$m$: number of total number of operations (queries, links, and cuts)

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Tarjan's off-line lowest common ancestors algorithm 1984 $O(n+m)$ $O(n)$ Exact Deterministic Time & Space
Aho, Hopcroft, and Ullman (Offline) 1976 $O(n+ m*alpha(m + n, n)$) where alpha is the inverse Ackermann function $O(n)$ Exact Deterministic Time & Space

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination