3SAT: Difference between revisions
Jump to navigation
Jump to search
(Created page with "{{DISPLAYTITLE:3SAT (Boolean Satisfiability)}} == Description == 3SAT restricts the boolean formula to CNF with (at most) 3 literals per clause == Related Problems == Generalizations: k-SAT Subproblem: 1-in-3SAT, Not-All-Equal 3-SAT (NAE 3SAT), 3SAT-5, Monotone 3SAT Related: SAT, Conjunctive Normal Form SAT, Disjunctive Normal Form SAT, Monotone 1-in-3SAT, Monotone Not-Exactly-1-in-3SAT, All-Equal-SAT, Not-All-Equal...") |
No edit summary |
||
Line 14: | Line 14: | ||
== Parameters == | == Parameters == | ||
n: number of variables | |||
== Table of Algorithms == | == Table of Algorithms == |
Revision as of 12:03, 15 February 2023
Description
3SAT restricts the boolean formula to CNF with (at most) 3 literals per clause
Related Problems
Generalizations: k-SAT
Subproblem: 1-in-3SAT, Not-All-Equal 3-SAT (NAE 3SAT), 3SAT-5, Monotone 3SAT
Related: SAT, Conjunctive Normal Form SAT, Disjunctive Normal Form SAT, Monotone 1-in-3SAT, Monotone Not-Exactly-1-in-3SAT, All-Equal-SAT, Not-All-Equal 3-SAT (NAE 3SAT), Monotone Not-All-Equal 3-SAT (Monotone NAE 3SAT), 2SAT, 3SAT-5, 4SAT, Monotone 3SAT, XOR-SAT, Horn SAT, Dual-Horn SAT, Renamable Horn, MaxSAT
Parameters
n: number of variables
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Hertli (Modified PPSZ) | 2014 | $O({1.30704}^n)$ | $O(kn)$ | Exact | Randomized | Time |