Disjunctive Reachability Queries in MDPs: Difference between revisions
(Created page with "{{DISPLAYTITLE:Disjunctive Reachability Queries in MDPs (Model-Checking Problem)}} == Description == Given a model of a system and an objective, the model-checking problem asks whether the model satisfies the objective. In this case, the model is a Markov Decision Process (MDP), and the objective is reachability: given a set of target vertices $T\subseteq V$, determine whether there is an infinite path that visits a vertex in $T$ at least once (i.e. you want to reach...") |
No edit summary |
||
Line 18: | Line 18: | ||
== Parameters == | == Parameters == | ||
n: number of vertices | |||
m: number of edges | m: number of edges | ||
k: number of objectives | k: number of objectives | ||
MEC: O(\min(n^2, m^{1.5})) | |||
MEC: O(\min(n^2, m^{1.5})) | |||
== Table of Algorithms == | == Table of Algorithms == | ||
Currently no algorithms in our database for the given problem. | Currently no algorithms in our database for the given problem. |
Revision as of 12:04, 15 February 2023
Description
Given a model of a system and an objective, the model-checking problem asks whether the model satisfies the objective.
In this case, the model is a Markov Decision Process (MDP), and the objective is reachability: given a set of target vertices $T\subseteq V$, determine whether there is an infinite path that visits a vertex in $T$ at least once (i.e. you want to reach some vertex in $T$).
Furthermore, given $k$ reachability objectives, the disjunctive reachability query question asks whether there is a strategy for player 1 to ensure that one of the reachability objectives is satisfied with probability 1.
Disjunctive queries do not coincide with disjunctive objectives on MDPs.
Related Problems
Generalizations: Reachability in MDPs
Related: Conjunctive Reachability Queries in MDPs, Safety in MDPs, Disjunctive Safety Queries in MDPs, Conjunctive Safety Queries in MDPs, Safety in Graphs, Disjunctive Queries of Safety in Graphs, Disjunctive coBüchi Objectives, Generalized Büchi Games
Parameters
n: number of vertices
m: number of edges
k: number of objectives
MEC: O(\min(n^2, m^{1.5}))
Table of Algorithms
Currently no algorithms in our database for the given problem.