3-Dimensional Poisson Problem: Difference between revisions
Jump to navigation
Jump to search
(Created page with "{{DISPLAYTITLE:3-Dimensional Poisson Problem (Poisson Problem)}} == Description == Given $f$, solve for $u$ in the 3-dimensional Poisson equation: $u_{xx} + u_{yy} + u_{zz} = f(x,y,z)$ == Related Problems == Related: 2-Dimensional Poisson Problem == Parameters == No parameters found. == Table of Algorithms == {| class="wikitable sortable" style="text-align:center;" width="100%" ! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Referenc...") |
No edit summary |
||
Line 48: | Line 48: | ||
|} | |} | ||
== Time Complexity | == Time Complexity Graph == | ||
[[File:Poisson Problem - 3-Dimensional Poisson Problem - Time.png|1000px]] | [[File:Poisson Problem - 3-Dimensional Poisson Problem - Time.png|1000px]] | ||
== Space Complexity | == Space Complexity Graph == | ||
[[File:Poisson Problem - 3-Dimensional Poisson Problem - Space.png|1000px]] | [[File:Poisson Problem - 3-Dimensional Poisson Problem - Space.png|1000px]] | ||
== Pareto | == Pareto Frontier Improvements Graph == | ||
[[File:Poisson Problem - 3-Dimensional Poisson Problem - Pareto Frontier.png|1000px]] | [[File:Poisson Problem - 3-Dimensional Poisson Problem - Pareto Frontier.png|1000px]] |
Revision as of 13:04, 15 February 2023
Description
Given $f$, solve for $u$ in the 3-dimensional Poisson equation:
$u_{xx} + u_{yy} + u_{zz} = f(x,y,z)$
Related Problems
Related: 2-Dimensional Poisson Problem
Parameters
No parameters found.
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
5-point star Cramer's rule | 1945 | $O({5}^{(n^{3})$}) | $O({5}^{(n^{3})})$ for sure, $O(n^{3})$ possibly??? (if super conservative) | Exact | Deterministic | |
5-point Gauss elimination | 1945 | $O(n^{7})$ | $O(n^{6})$ | Exact | Deterministic | |
5-point Gauss Seidel iteration | 1945 | $O(n^{5} logn)$ | $O(n^{3})$? | Exact | Deterministic | |
5-point SOR iteration | 1954 | $O(n^{4} logn)$ | $O(n^{3})$? | Exact | Deterministic | |
5-point ADI iteration | 1955 | $O(n^{3} log^{2}n)$ | $O(n^{3})$? | Exact | Deterministic | |
9-point SOR iteration | 1956 | $O(n^{4})$ | $O(n^{3})$? | Exact | Deterministic | |
9-point Tensor product | 1964 | $O(n^{4})$ | $O(n^{3})$? | Exact | Deterministic | Time |
9-point ADI iteration | 1965 | $O(n^{3} logn)$ | $O(n^{3})$? | Exact | Deterministic | |
5-point FFT | 1965 | $O(n^{3} logn)$ | $O(n^{3})$? | Exact | Deterministic | |
9-point ADI iteration + smooth guess | 1969 | $O(n^{3} logn)$ | $O(n^{3})$? | Exact | Deterministic | |
5-point cyclic reduction | 1970 | $O(n^{3} logn)$ | $O(n^{3})$? | Exact | Deterministic | |
9-point FFT | 1978 | $O(n^{3} logn)$ | $O(n^{3})$? | Exact | Deterministic |
Time Complexity Graph
Error creating thumbnail: Unable to save thumbnail to destination
Space Complexity Graph
Error creating thumbnail: Unable to save thumbnail to destination
Pareto Frontier Improvements Graph
Error creating thumbnail: Unable to save thumbnail to destination