CFG Parsing: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 26: Line 26:
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:CFG Problems - CFG Parsing - Time.png|1000px]]
[[File:CFG Problems - CFG Parsing - Time.png|1000px]]


== Space Complexity graph ==  
== Space Complexity Graph ==  


[[File:CFG Problems - CFG Parsing - Space.png|1000px]]
[[File:CFG Problems - CFG Parsing - Space.png|1000px]]


== Pareto Decades graph ==  
== Pareto Frontier Improvements Graph ==  


[[File:CFG Problems - CFG Parsing - Pareto Frontier.png|1000px]]
[[File:CFG Problems - CFG Parsing - Pareto Frontier.png|1000px]]

Revision as of 13:04, 15 February 2023

Description

Given a grammar $G$ and a string $s$, find the parse structure, or analysis, assigned to the string $s$ by the grammar $G$.

Related Problems

Related: CFG Recognition

Parameters

n: length of the given string

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Earley parser 1968 $O(n^{3})$ $O(n^{2})$ Exact Deterministic Time & Space
GLR parser 1974 $O(n^{3})$ $O(n^{3})$ Exact Deterministic Time & Space

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

Space Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

Pareto Frontier Improvements Graph

Error creating thumbnail: Unable to save thumbnail to destination

Reductions TO Problem

Problem Implication Year Citation Reduction
BMM if: to-time: $O(n^{3-\epsilon})$ for some $\epsilon > {0}$ where $n \times n$ matrix
then: from-time: $O(gn^{3-\epsilon})$ where $g$ is the size of the CFG
1975 https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/S0022000075800468 link

Reductions FROM Problem

Problem Implication Year Citation Reduction
BMM if: to-time: $O(gn^{3-\epsilon})$ for some $\epsilon > {0}$ where $g$ is the size of the CFG and $n$ is the size of the string
then: from-time: $O(n^{3-\epsilon/3})$ where $n \times n$ matrix
2002 https://arxiv.org/abs/cs/0112018 link

References/Citation

https://link-springer-com.ezproxy.canberra.edu.au/chapter/10.1007%2F978-3-662-21545-6_18