Discrete Logarithm Over Finite Fields: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:
|-
|-
| [[Function Field Sieve (FFS) (Discrete Logarithm Over Finite Fields Logarithm Calculations)|Function Field Sieve (FFS)]] || 1999 || $O({2}^n)$ || $O(n^{2/3})$? || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/S0890540198927614 Time]
| [[Function Field Sieve (FFS) (Discrete Logarithm Over Finite Fields Logarithm Calculations)|Function Field Sieve (FFS)]] || 1999 || $O({2}^n)$ || $O(n^{2/3})$? || Exact || Deterministic || [https://www-sciencedirect-com.ezproxy.canberra.edu.au/science/article/pii/S0890540198927614 Time]
|-
| [[Index calculus algorithm (Discrete Logarithm Over Finite Fields, F_q Logarithm Calculations)|Index calculus algorithm]] || 1922 || $O(e^{(\sqrt({2}) \sqrt(n*logn))})$ || $O(n+r^{2})$? || Exact || Deterministic || 
|-
|-
| [[Number Field Sieve (NFS) (Discrete Logarithm Over Finite Fields Logarithm Calculations)|Number Field Sieve (NFS)]] || 1990 || $O({2}^n)$ || $O(n^{2/3})$ || Exact || Deterministic || [http://www.ams.org.ezproxy.canberra.edu.au/notices/199612/pomerance.pdf Time & Space]
| [[Number Field Sieve (NFS) (Discrete Logarithm Over Finite Fields Logarithm Calculations)|Number Field Sieve (NFS)]] || 1990 || $O({2}^n)$ || $O(n^{2/3})$ || Exact || Deterministic || [http://www.ams.org.ezproxy.canberra.edu.au/notices/199612/pomerance.pdf Time & Space]
Line 32: Line 34:
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:Logarithm Calculations - Discrete Logarithm Over Finite Fields - Time.png|1000px]]
[[File:Logarithm Calculations - Discrete Logarithm Over Finite Fields - Time.png|1000px]]


== Space Complexity graph ==  
== Space Complexity Graph ==  


[[File:Logarithm Calculations - Discrete Logarithm Over Finite Fields - Space.png|1000px]]
[[File:Logarithm Calculations - Discrete Logarithm Over Finite Fields - Space.png|1000px]]


== Pareto Decades graph ==  
== Pareto Frontier Improvements Graph ==  


[[File:Logarithm Calculations - Discrete Logarithm Over Finite Fields - Pareto Frontier.png|1000px]]
[[File:Logarithm Calculations - Discrete Logarithm Over Finite Fields - Pareto Frontier.png|1000px]]

Revision as of 13:05, 15 February 2023

Description

Let $F_{p^n}$ denote the finite field of $p^n$ elements, where $p$ is a prime. Let $x$ be a generator for the multiplicative group of $F_{p^n}$. The discrete logarithm problem over $F_{p^n}$ is to compute, for any given nonzero $h \in F_{p^n}$, the least nonnegative integer $e$ such that $x^e=h$. In this context we shall write $e=\log_x h$.

Parameters

n: number of digits/bits in the order of the finite group

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Trial Multiplication 1940 $O({2}^n)$ $O({1})$ Exact Deterministic
Baby-step Giant-step 1971 $O({2}^{\sqrt{n}})$ $O({2}^{\sqrt{n}})$ Exact Deterministic Time
Function Field Sieve (FFS) 1999 $O({2}^n)$ $O(n^{2/3})$? Exact Deterministic Time
Index calculus algorithm 1922 $O(e^{(\sqrt({2}) \sqrt(n*logn))})$ $O(n+r^{2})$? Exact Deterministic
Number Field Sieve (NFS) 1990 $O({2}^n)$ $O(n^{2/3})$ Exact Deterministic Time & Space
Pohlig-Hellman 1978 $O({2}^{\sqrt{n}})$, only for primes; does much better for composites $O({2}^{\sqrt{n}})$ (though only for primes) Exact Deterministic Time
Pollard's rho algorithm 1978 $O({2}^{(n/{2})})$ $O({1})$ Exact Deterministic Time
Pollard's kangaroo algorithm 1978 $O({2}^n)$ $O({1})$ Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

Space Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

Pareto Frontier Improvements Graph

Error creating thumbnail: Unable to save thumbnail to destination