Matrix Chain Ordering Problem: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
== Related Problems ==  
== Related Problems ==  


Subproblem: [[Approximate MCOP]], [[ Matrix Chain Scheduling Problem]]
Subproblem: [[Approximate MCOP]]


Related: [[Matrix Chain Scheduling Problem]], [[Approximate MCSP]]
Related: [[Matrix Chain Scheduling Problem]], [[Approximate MCSP]]
Line 26: Line 26:
| [[Dynamic Programming Algorithm (S. S. Godbole) (Matrix Chain Ordering Problem Matrix Chain Multiplication)|Dynamic Programming Algorithm (S. S. Godbole)]] || 1953 || $O(n^{3})$ || $O(n^{2})$ || Exact || Deterministic || [http://mitpress.mit.edu.ezproxy.canberra.edu.au/9780262046305/introduction-to-algorithms/ Space]
| [[Dynamic Programming Algorithm (S. S. Godbole) (Matrix Chain Ordering Problem Matrix Chain Multiplication)|Dynamic Programming Algorithm (S. S. Godbole)]] || 1953 || $O(n^{3})$ || $O(n^{2})$ || Exact || Deterministic || [http://mitpress.mit.edu.ezproxy.canberra.edu.au/9780262046305/introduction-to-algorithms/ Space]
|-
|-
| [[T. C. Hu ; M. T. Shing (Matrix Chain Ordering Problem Matrix Chain Multiplication)|T. C. Hu ; M. T. Shing]] || 1982 || $O(nlogn)$ || $O(n)$ || Exact || Deterministic || [https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.695.2923 Time]
| [[T. C. Hu ; M. T. Shing (Matrix Chain Ordering Problem Matrix Chain Multiplication)|T. C. Hu ; M. T. Shing]] || 1982 || $O(n \log n)$ || $O(n)$ || Exact || Deterministic || [https://doi.org/10.1137/0211028 Time]
|-
|-
|}
|}

Revision as of 08:18, 10 April 2023

Description

Matrix chain multiplication (or Matrix Chain Ordering Problem; MCOP) is an optimization problem. Given a sequence of matrices, the goal is to find the most efficient way to multiply these matrices.

Related Problems

Subproblem: Approximate MCOP

Related: Matrix Chain Scheduling Problem, Approximate MCSP

Parameters

$n$: number of matrices

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Brute Force 1940 $O({4}^n)$ $O(n)$ Exact Deterministic
Dynamic Programming Algorithm (S. S. Godbole) 1953 $O(n^{3})$ $O(n^{2})$ Exact Deterministic Space
T. C. Hu ; M. T. Shing 1982 $O(n \log n)$ $O(n)$ Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

Space Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

Time-Space Tradeoff

Error creating thumbnail: Unable to save thumbnail to destination

References/Citation

https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.695.2923