Sparse Linear System: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
== Parameters == | == Parameters == | ||
n: number of variables and number of equations | $n$: number of variables and number of equations | ||
m: number of nonzero entries in matrix | $m$: number of nonzero entries in matrix | ||
k: ratio between largest and smallest eigenvalues | $k$: ratio between largest and smallest eigenvalues | ||
== Table of Algorithms == | == Table of Algorithms == | ||
Line 26: | Line 26: | ||
|- | |- | ||
| [[Harrow (Quantum) (Sparse Linear System Linear System)|Harrow (Quantum)]] || 2009 || $O(k^{2}* | | [[Harrow (Quantum) (Sparse Linear System Linear System)|Harrow (Quantum)]] || 2009 || $O(k^{2}*\log n)$ || $O(\log n)$ || Exact || Quantum || [https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.150502 Time] & [https://arxiv.org/pdf/0811.3171.pdf Space] | ||
|- | |- | ||
|} | |} |
Latest revision as of 08:18, 10 April 2023
Description
In this case, we restrict $A$ to be sparse (i.e. $A$ only has $O(n)$ nonzero entries).
Related Problems
Generalizations: General Linear System
Related: Positive Definite, Hermitian Matrix, Non-Definite, Symmetric Matrix, Toeplitz Matrix, Vandermonde Matrix
Parameters
$n$: number of variables and number of equations
$m$: number of nonzero entries in matrix
$k$: ratio between largest and smallest eigenvalues
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Harrow (Quantum) | 2009 | $O(k^{2}*\log n)$ | $O(\log n)$ | Exact | Quantum | Time & Space |