SLAM Algorithms: Difference between revisions
Jump to navigation
Jump to search
(Created page with "{{DISPLAYTITLE:SLAM Algorithms (SLAM Algorithms)}} == Description == Simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it. == Parameters == No parameters found. == Table of Algorithms == {| class="wikitable sortable" style="text-align:center;" width="100%" ! Name !! Year !! Time !! Space !! Approximation Factor !!...") |
No edit summary |
||
Line 24: | Line 24: | ||
| [[Rao-Blackwellized Particle Filtering SLAM (SLAM Algorithms SLAM Algorithms)|Rao-Blackwellized Particle Filtering SLAM]] || 2001 || $O(n^{2})$ || $O(n)$? || || Deterministic || [https://papers.nips.cc/paper/1716-bayesian-map-learning-in-dynamic-environments.pdf Time] | | [[Rao-Blackwellized Particle Filtering SLAM (SLAM Algorithms SLAM Algorithms)|Rao-Blackwellized Particle Filtering SLAM]] || 2001 || $O(n^{2})$ || $O(n)$? || || Deterministic || [https://papers.nips.cc/paper/1716-bayesian-map-learning-in-dynamic-environments.pdf Time] | ||
|- | |- | ||
| [[FastSlam (SLAM Algorithms SLAM Algorithms)|FastSlam]] || 2003 || $O(m*log n)$ per iteration || $O(mn)$? || || Deterministic || [http://robots.stanford.edu/papers/montemerlo.fastslam-tr.pdf Time] | | [[FastSlam (SLAM Algorithms SLAM Algorithms)|FastSlam]] || 2003 || $O(m*\log n)$ per iteration || $O(mn)$? || || Deterministic || [http://robots.stanford.edu/papers/montemerlo.fastslam-tr.pdf Time] | ||
|- | |- | ||
| [[srba (SLAM Algorithms SLAM Algorithms)|srba]] || 2002 || $O(n^{2})$ || $O(n^{2})$? || || Deterministic || [http://ingmec.ual.es/~jlblanco/papers/blanco2013rba.pdf Time] | | [[srba (SLAM Algorithms SLAM Algorithms)|srba]] || 2002 || $O(n^{2})$ || $O(n^{2})$? || || Deterministic || [http://ingmec.ual.es/~jlblanco/papers/blanco2013rba.pdf Time] | ||
|- | |- | ||
|} | |} |
Latest revision as of 08:24, 10 April 2023
Description
Simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.
Parameters
No parameters found.
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
EKF SLAM | 1998 | $O(n^{3})$ | $O(n^{2})$? | Deterministic | Time | |
UKF | 2000 | $O(n^{3})$ | $O(n^{2})$? | Deterministic | Time | |
Compressed Extended KF | 2002 | $O(n^{3})$ | $O(n^{2})$? | Deterministic | Time | |
Rao-Blackwellized Particle Filtering SLAM | 2001 | $O(n^{2})$ | $O(n)$? | Deterministic | Time | |
FastSlam | 2003 | $O(m*\log n)$ per iteration | $O(mn)$? | Deterministic | Time | |
srba | 2002 | $O(n^{2})$ | $O(n^{2})$? | Deterministic | Time |