Matrix Chain Ordering Problem: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 33: Line 33:


[[File:Matrix Chain Multiplication - Matrix Chain Ordering Problem - Time.png|1000px]]
[[File:Matrix Chain Multiplication - Matrix Chain Ordering Problem - Time.png|1000px]]
== Space Complexity Graph ==
[[File:Matrix Chain Multiplication - Matrix Chain Ordering Problem - Space.png|1000px]]
== Time-Space Tradeoff ==
[[File:Matrix Chain Multiplication - Matrix Chain Ordering Problem - Pareto Frontier.png|1000px]]


== References/Citation ==  
== References/Citation ==  


https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.695.2923
https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.695.2923

Latest revision as of 09:04, 28 April 2023

Description

Matrix chain multiplication (or Matrix Chain Ordering Problem; MCOP) is an optimization problem. Given a sequence of matrices, the goal is to find the most efficient way to multiply these matrices.

Related Problems

Subproblem: Approximate MCOP

Related: Matrix Chain Scheduling Problem, Approximate MCSP

Parameters

$n$: number of matrices

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Brute Force 1940 $O({4}^n)$ $O(n)$ Exact Deterministic
Dynamic Programming Algorithm (S. S. Godbole) 1953 $O(n^{3})$ $O(n^{2})$ Exact Deterministic Space
T. C. Hu ; M. T. Shing 1982 $O(n \log n)$ $O(n)$ Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

References/Citation

https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.695.2923