Maximum Subarray (Maximum Subarray Problem)
Jump to navigation
Jump to search
Description
Given a $d$-dimensional array $M$ with $n^d$ real-valued entries, find the $d$-dimensional subarray of $M$ which maximizes the sum of the elements it contains.
Related Problems
Subproblem: 1D Maximum Subarray, 2D Maximum Subarray, Maximum Square Subarray
Related: 2D Maximum Subarray, Maximum Square Subarray
Parameters
n: length of array
d: dimensionality of array
Table of Algorithms
Currently no algorithms in our database for the given problem.
Reductions TO Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
Distance Product | if: to-time: $O(n^{3-\epsilon})$ for some $\epsilon > {0}$ then: from-time: $O(n^{3-\epsilon})$ |
1998 | https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.5555/314613.314823 | link |
Negative Triangle Detection | 1998 | https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.5555/314613.314823 | link |
Reductions FROM Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
Negative Triangle Detection | 2018 | https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/3186893, Theorem 5.4 | link | |
Max-Weight k-Clique | if: to-time: $O(n^{d+\lfloor d/{2}\rfloor-\epsilon})$ for $d$-dimensional hypercube arrays then: from-time: $O(n^{k-\epsilon})$ on $n$ vertex graphs for $k=d+\lfloor d/{2}\rfloor$ |
2016 | https://arxiv.org/pdf/1602.05837.pdf | link |