Blob Detection (Feature Detection)
Jump to navigation
Jump to search
Description
The regions or points which have noticeable difference with their surroundings is called blob. Blob detection is the problem of detecting such blobs in a given image.
Related Problems
Related: Corner Detection
Parameters
No parameters found.
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
T. Lindeberg DoG | 2012 | $O(n^{2})$ | Deterministic | |||
T. Lindeberg DoG | 2015 | $O(n \log n)$ | Deterministic | |||
SIFT Algorithm Lowe | 2004 | $O(n^{3})$ | Deterministic | |||
Hessain Determinant Lindeberg | 1994 | $O(n^{3})$ | Deterministic | |||
Hessain Determinant Lindeberg | 1998 | $O(n^{3})$ | Deterministic | |||
SURF Descriptor | 2006 | $O(n^{2})$ | Deterministic | |||
Hessian-Laplace Mikolajczyk and Schmid | 2004 | $O(n^{3})$ | Deterministic | |||
Spatio-temporal Geert Willems; Tinne Tuytelaars and Luc van Gool () | 2008 | $O(n^{2})$ | Deterministic | |||
Lindeberg's watershed-based grey-level blob detection algorithm | 1991 | $O(n^{3})$ | Deterministic | |||
Maximally stable extremal regions Matas | 2002 | $O(n^{2} log^{3} n)$ | Deterministic | |||
A. Baumberg. | 2000 | $O(n^{3})$ | Deterministic | |||
Y. Dufournaud; C. Schmid; and R. Horaud | 2000 | $O(n^{2} \log\log n)$ | Deterministic | |||
local scale-invariant Lowe | 1999 | $O(n^{3})$ | Deterministic | |||
T. Tuytelaars and L. Van Gool | 2000 | $O(n^{3})$ | Deterministic |