Maximum Subarray (Maximum Subarray Problem)
Jump to navigation
Jump to search
Description
Given a $d$-dimensional array $M$ with $n^d$ real-valued entries, find the $d$-dimensional subarray of $M$ which maximizes the sum of the elements it contains.
Related Problems
Subproblem: 1D Maximum Subarray, 2D Maximum Subarray, Maximum Square Subarray
Related: 2D Maximum Subarray, Maximum Square Subarray
Parameters
n: length of array
d: dimensionality of array
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Brute Force | 1977 | $O(n^{3})$ | $O({1})$ auxiliary | Exact | Deterministic | |
Grenander | 1977 | $O(n^{2})$ | $O(n)$ | Exact | Deterministic | |
Faster Brute Force (via x(L:U) = x(L:U-1)+x(U)) | 1977 | $O(n^{2})$ | $O({1})$ auxiliary | Exact | Deterministic | Time |
Shamos | 1978 | $O(nlogn)$ | $O(log n)$ auxiliary | Exact | Deterministic | |
Kadane's Algorithm | 1982 | $O(n)$ | $O({1})$ auxiliary | Exact | Deterministic | |
Perumalla and Deo | 1995 | $O(log n)$ | $O(n)$ auxiliary | Exact | Parallel | Time |
Gries | 1982 | $O(n)$ | $O({1})$ auxiliary | Exact | Deterministic | Time |
Bird | 1989 | $O(n)$ | $O({1})$ auxiliary | Exact | Deterministic | Time |
Ferreira, Camargo, Song | 2014 | $O(log n)$ | $O(n)$ auxiliary | Exact | Parallel | Time |
Reductions TO Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
Distance Product | if: to-time: $O(n^{3-\epsilon})$ for some $\epsilon > {0}$ then: from-time: $O(n^{3-\epsilon})$ |
1998 | https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.5555/314613.314823 | link |
Negative Triangle Detection | 1998 | https://dl-acm-org.ezproxy.canberra.edu.au/doi/abs/10.5555/314613.314823 | link |
Reductions FROM Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
Negative Triangle Detection | 2018 | https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/3186893, Theorem 5.4 | link | |
Max-Weight k-Clique | if: to-time: $O(n^{d+\lfloor d/{2}\rfloor-\epsilon})$ for $d$-dimensional hypercube arrays then: from-time: $O(n^{k-\epsilon})$ on $n$ vertex graphs for $k=d+\lfloor d/{2}\rfloor$ |
2016 | https://arxiv.org/pdf/1602.05837.pdf | link |