Discrete Logarithm Over Finite Fields (Logarithm Calculations)
Jump to navigation
Jump to search
Description
Let $F_{p^n}$ denote the finite field of $p^n$ elements, where $p$ is a prime. Let $x$ be a generator for the multiplicative group of $F_{p^n}$. The discrete logarithm problem over $F_{p^n}$ is to compute, for any given nonzero $h \in F_{p^n}$, the least nonnegative integer $e$ such that $x^e=h$. In this context we shall write $e=\log_x h$.
Parameters
n: number of digits/bits in the order of the finite group
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Trial Multiplication | 1940 | $O({2}^n)$ | $O({1})$ | Exact | Deterministic | |
Baby-step Giant-step | 1971 | $O({2}^{\sqrt{n}})$ | $O({2}^{\sqrt{n}})$ | Exact | Deterministic | Time |
Function Field Sieve (FFS) | 1999 | $O({2}^n)$ | $O(n^{2/3})$? | Exact | Deterministic | Time |
Index calculus algorithm | 1922 | $O(e^{(\sqrt({2}) \sqrt(n*logn))})$ | $O(n+r^{2})$? | Exact | Deterministic | |
Number Field Sieve (NFS) | 1990 | $O({2}^n)$ | $O(n^{2/3})$ | Exact | Deterministic | Time & Space |
Pohlig-Hellman | 1978 | $O({2}^{\sqrt{n}})$, only for primes; does much better for composites | $O({2}^{\sqrt{n}})$ (though only for primes) | Exact | Deterministic | Time |
Pollard's rho algorithm | 1978 | $O({2}^{(n/{2})})$ | $O({1})$ | Exact | Deterministic | Time |
Pollard's kangaroo algorithm | 1978 | $O({2}^n)$ | $O({1})$ | Exact | Deterministic | Time |
Time Complexity Graph
Error creating thumbnail: Unable to save thumbnail to destination
Space Complexity Graph
Error creating thumbnail: Unable to save thumbnail to destination
Pareto Frontier Improvements Graph
Error creating thumbnail: Unable to save thumbnail to destination