APSP on Dense Undirected Unweighted Graphs (All-Pairs Shortest Paths (APSP))

From Algorithm Wiki
Revision as of 07:52, 10 April 2023 by Admin (talk | contribs)
Jump to navigation Jump to search

Description

In this case, the graph $G=(V,E)$ that we consider is dense ($m = O(n^2)$), is undirected, and is unweighted (or equivalently, has all unit weights).

Related Problems

Generalizations: APSP

Related: APSP on Dense Directed Graphs with Arbitrary Weights, APSP on Dense Undirected Graphs with Arbitrary Weights, APSP on Geometrically Weighted Graphs, APSP on Dense Undirected Graphs with Positive Integer Weights, APSP on Sparse Directed Graphs with Arbitrary Weights, APSP on Sparse Undirected Graphs with Positive Integer Weights, APSP on Sparse Undirected Graphs with Arbitrary Weights, APSP on Dense Directed Unweighted Graphs, APSP on Sparse Directed Unweighted Graphs, APSP on Sparse Undirected Unweighted Graphs, (5/3)-approximate ap-shortest paths

Parameters

$n$: number of vertices

$m$: number of edges

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Seidel's algorithm 1995 $O (n^{2.{37}3} \log n)$ $O(n^{2})$ Exact Deterministic Time

Time Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

Space Complexity Graph

Error creating thumbnail: Unable to save thumbnail to destination

Time-Space Tradeoff

Error creating thumbnail: Unable to save thumbnail to destination