Delaunay Triangulation (Delaunay Triangulation)
(Redirected from Family:Delaunay Triangulation)
Jump to navigation
Jump to search
Description
Given a set of points, the Delaunay Triangulation problem is to triangulate the points using the following notion of triangulation.
$AB$ is an edge of the Delaunay triangulation iff there is a circle passing through $A$ and $B$ so that all other points in the point set, $C$, where $C$ is not equal to $A$ or $B$, lie outside the circle. Equivalently, all triangles in the Delaunay triangulation for a set of points will have empty circumscribed circles. That is, no points lie in the interior of any triangle's circumcircle.
Parameters
$n$: number of points
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Fortune | 1987 | $O(n \log n)$ | $O(n)$ | Exact | Deterministic | Time |
Naive algorithm | 1934 | $O(n^{4})$? (previously $O(n^{2})$) | $O(n)$ | Exact | Deterministic | |
Flipping algorithm | 1999 | $O(n^{2})$ | $O(n)$ | Exact | Deterministic | Time |
de Berg; Cheong | 2008 | $O(n \log n)$ | $O(n)$ | Exact | Deterministic | Time |
Bowyer–Watson algorithm | 1981 | $O(n \log n)$ | $O(n)$ | Exact | Deterministic | Time |
Belloch | 2006 | $O(n \log n)$ | $O(n)$ | Exact | Parallel | Time |
Guibas; Stofli | 1985 | $O(n \log n)$ | $O(n)$ | Exact | Deterministic | Time |
Fortune | 1992 | $O(n^{2})$ | $O(n)$ | Exact | Deterministic | Time |
S-hull (Sinclair) | 2010 | $O(n \log n)$ | $O(n)$ | Exact | Deterministic | Time |
Dwyer | 1987 | $O(n \log n)$ | $O(n)$? | Exact | Deterministic | Time |
Katajainen and M. Koppinen | 1988 | $O(n \log n)$ | Exact | Deterministic | Time | |
Drysdale; Su | 1996 | $O(n)$ | $O(n)$? | Exact | Deterministic | Time |
Dwyer (higher dimensions) | 1987 | $O(n \log \log n)$ | $O(n)$? | Exact | Deterministic | Time |
Time Complexity Graph
Error creating thumbnail: Unable to save thumbnail to destination