Independent Set Queries: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:Independent Set Queries (Independent Set Queries)}} == Description == For a graph $G=(V,E)$ and a given subset of vertices $S\subseteq G$, answer the query of the form "is $S$ an independent set?" == Parameters == <pre>n: number of vertices m: number of edges</pre> == Table of Algorithms == Currently no algorithms in our database for the given problem. == Reductions FROM Problem == {| class="wikitable sortable" style="text-align:center;" width=...")
 
No edit summary
 
(One intermediate revision by the same user not shown)
Line 6: Line 6:
== Parameters ==  
== Parameters ==  


<pre>n: number of vertices
$n$: number of vertices
m: number of edges</pre>
 
$m$: number of edges


== Table of Algorithms ==  
== Table of Algorithms ==  

Latest revision as of 08:27, 10 April 2023

Description

For a graph $G=(V,E)$ and a given subset of vertices $S\subseteq G$, answer the query of the form "is $S$ an independent set?"

Parameters

$n$: number of vertices

$m$: number of edges

Table of Algorithms

Currently no algorithms in our database for the given problem.

Reductions FROM Problem

Problem Implication Year Citation Reduction
Triangle Detection if: to-time: $O(n^{2} / \log^c n)$ to answer all subsequent batches of $\log n$ independent set queries from a graph that takes $O(n^k)$ time to preprocess for some $c,k > {0}$
then: from-time: $O(n^{3} / \log^{c+1} n)$
2018 https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/3186893, Theorem 6.5 link
BMM if: to-time: $O(n^{2} / \log^c n)$ to answer all subsequent batches of $\log n$ independent set queries from a graph that takes $O(n^k)$ time to preprocess for some $c,k > {0}$
then: from-time: $O(n^{3} / \log^{c+1} n)$
2018 https://dl-acm-org.ezproxy.canberra.edu.au/doi/pdf/10.1145/3186893, Theorem 6.5 link