Mesh Parameterization (Mesh Parameterization)

From Algorithm Wiki
Jump to navigation Jump to search

Description

Given any two surfaces with similar topology it is possible to compute a one-to-one and onto mapping between them. If one of these surfaces is represented by a triangular mesh, the problem of computing such a mapping is referred to as mesh parameterization.

Parameters

No parameters found.

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
ECK M.; DEROSE T.; DUCHAMP T.; 1995 $O(n^{2})$ Exact Deterministic Time
FLOATER 1997 $O(n^{2})$ Exact Deterministic Time
PINKALL U.; POLTHIER K 1993 $O(n^{2})$ Exact Deterministic Time
FLOATER 2003 $O(n^{2})$ Exact Deterministic Time
LEE Y.; KIM H. S.; LEE S 2002 $O(n \log^{3}n)$ Exact Deterministic Time
DESBRUN M.; MEYER M.; ALLIEZ P. 2002 $O(n^{2})$ Exact Deterministic Time
LÉVY B.; PETITJEAN S.; RAY N.; MAILLOT J 2002 $O(n \log^{2.5} n)$ Exact Deterministic Time
KARNI Z.; GOTSMAN C.; GORTLER S. J. 2005 $O(n^{2})$ Exact Deterministic Time
HORMANN K.; GREINER G 1999 $O(n^{2})$ Exact Deterministic Time
SHEFFER A.; DE STURLER E. 2000 $O(n^{2})$ Exact Deterministic Time
SHEFFER A.; LÉVY B.; MOGILNITSKY M.; BOGOMYAKOV A. 2005 $O(n^{2})$ Exact Deterministic Time
ZAYER R.; LÉVY B.; SEIDEL H.-P. 2007 $O(n)$ Exact Deterministic Time
SANDER P. V.; SNYDER J.; GORTER S. J.; HOPPE 2001 $O(n^{2})$ Exact Deterministic Time
YAN J. Q.; YANG X.; SHI P. F 2006 $O(n^{2})$ Exact Deterministic
ZAYER R.; ROESSL C.; SEIDEL H.-P 2005 $O(n \log n)$ Exact Deterministic Time
YOSHIZAWA S.; BELYAEV A. G.; SEIDEL H.-P 2004 $O(n^{2})$ Exact Deterministic Time
CHEN Z. G.; LIU L. G.; ZHANG Z. Y.; WANG G. J. 2007 $O(n^{2})$ Exact Deterministic Time
YANG Y.; KIM J.; LUO F.; HU S.; GU X. 2008 $O(n \log\log n)$ Exact Deterministic
BEN-CHEN M.; GOTSMAN C.; BUNIN G. 2008 $O(n \log^{2}n)$ Exact Deterministic Time
SPRINGBORN B.; SCHROEDER P.; PINKALL U. 2008 $O(n \log^{2}n)$ Exact Deterministic Time