Motif Search: Difference between revisions
Jump to navigation
Jump to search
(Created page with "== Problem Description== == Bounds Chart == 350px == Step Chart == 350px == Improvement Table == {| class="wikitable" style="text-align:center;" width="100%" !width="20%" | Complexity Classes !! width="40%" | Algorithm Paper Links !! width="40%" | Lower Bounds Paper Links |- | rowspan="1" | Exp/Factorial | | |- | rowspan="1" | Polynomial > 3 | | |- | rowspan="1" | Cubic | | |- | rowspan="1" |...") |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | {{DISPLAYTITLE:Motif Search (Motif Search)}} | ||
== Description == | |||
Motif search is the problem of identifying motifs, recurring or conserved patterns, in the strings (typically biological sequence data sets). | |||
== | == Parameters == | ||
== | $n$: size of set of input strings | ||
$m$: size of input strings | |||
$k$: length of substrings | |||
$\sigma$: function $V(k, m)$ defined as the number of $k$-mers that are at most $m$ Hamming distance from the motif space | |||
== Table of Algorithms == | |||
{| class="wikitable sortable" style="text-align:center;" width="100%" | |||
! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Reference | |||
|- | |- | ||
| | |||
| | | [[Lawrence, Reilly (Motif Search Motif Search)|Lawrence, Reilly]] || 1990 || $O(nm)$ || $O(nm)$ || || Deterministic || [https://www-ncbi-nlm-nih-gov.ezproxy.canberra.edu.au/pubmed/2184437 Time & Space] | ||
| | |||
|- | |- | ||
| | | [[Lawrence Gibbs Sampling (Motif Search Motif Search)|Lawrence Gibbs Sampling]] || 1993 || $O(nm)$ || $O(n + m)$ || || Deterministic || [https://science-sciencemag-org.ezproxy.canberra.edu.au/content/262/5131/208 Time] | ||
| | |||
| | |||
|- | |- | ||
| | | [[MotifSampler (Motif Search Motif Search)|MotifSampler ]] || 2001 || $O(nm)$ || $O(n + m)$ || || Deterministic || [https://www-ncbi-nlm-nih-gov.ezproxy.canberra.edu.au/pubmed/12015892 Time] | ||
| | |||
| | |||
|- | |- | ||
| | | [[Speller (Motif Search Motif Search)|Speller]] || 1998 || $O(mn^{2} \sigma)$ || $O(mn^{2}/w)$ || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/chapter/10.1007/BFb0054337 Time] & [https://www-ncbi-nlm-nih-gov.ezproxy.canberra.edu.au/pmc/articles/PMC2966288/pdf/1471-2105-11-S8-S1.pdf Space] | ||
| | |||
| | |||
|- | |- | ||
| | | [[Mitra (Motif Search Motif Search)|Mitra]] || 2002 || $O(k nm \sigma)$ || $O(mnk)$ || Exact || Deterministic || [https://pubmed-ncbi-nlm-nih-gov.ezproxy.canberra.edu.au/12169566/ Time] & [https://www-ncbi-nlm-nih-gov.ezproxy.canberra.edu.au/pmc/articles/PMC2966288/pdf/1471-2105-11-S8-S1.pdf Space] | ||
| | |||
| | |||
|- | |- | ||
| | | [[Census (Motif Search Motif Search)|Census]] || 2003 || $O(k nm \sigma)$ || $O(mnk)$ || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/chapter/10.1007/978-3-540-45078-8_5 Time] & [https://www-ncbi-nlm-nih-gov.ezproxy.canberra.edu.au/pmc/articles/PMC2966288/pdf/1471-2105-11-S8-S1.pdf Space] | ||
| | |- | ||
| | | [[Risotto (Motif Search Motif Search)|Risotto]] || 2006 || $O(mn^{2} \sigma)$ || $O(mn^{2})$ || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/chapter/10.1007/11682462_69 Time] & [https://www-ncbi-nlm-nih-gov.ezproxy.canberra.edu.au/pmc/articles/PMC2966288/pdf/1471-2105-11-S8-S1.pdf Space] | ||
|-|} | |- | ||
| [[PMS (Motif Search Motif Search)|PMS]] || 2007 || $O(nm^{2} \sigma)$ || $O(m^{2} n)$ || Exact || Deterministic || [https://ieeexplore-ieee-org.ezproxy.canberra.edu.au/abstract/document/4359890 Time] & [https://www-ncbi-nlm-nih-gov.ezproxy.canberra.edu.au/pmc/articles/PMC2966288/pdf/1471-2105-11-S8-S1.pdf Space] | |||
|- | |||
| [[Roth AlignACE (Motif Search Motif Search)|Roth AlignACE]] || 1998 || $O(nm)$ || $O(n + m)$ || || Deterministic || [https://www-ncbi-nlm-nih-gov.ezproxy.canberra.edu.au/pubmed/9788350 Time] | |||
|- | |||
| [[Helden Oligo-Analysis (Motif Search Motif Search)|Helden Oligo-Analysis]] || 1998 || $O(mn)$ || $O(m)$ || Exact || Deterministic || [https://www-ncbi-nlm-nih-gov.ezproxy.canberra.edu.au/pubmed/9719638 Time] | |||
|- | |||
| [[van Helden J; Rios AF; Collado-Vides J (Motif Search Motif Search)|van Helden J; Rios AF; Collado-Vides J]] || 2000 || $O(mn)$ || $O(m)$ || Exact || Deterministic || [https://www-ncbi-nlm-nih-gov.ezproxy.canberra.edu.au/pmc/articles/PMC102821/ Time] | |||
|- | |||
| [[Tompa M (Motif Search Motif Search)|Tompa M]] || 1999 || $O(mn)$ || $O(m^{2})$ || Exact || Deterministic || [https://www.aaai.org/Papers/ISMB/1999/ISMB99-030.pdf Time] | |||
|- | |||
| [[Sinha S; Tompa M YMF (Yeast Motif Finder) (Motif Search Motif Search)|Sinha S; Tompa M YMF (Yeast Motif Finder)]] || 2000 || $O(n^{0.{6}6} m)$ || $O(m)$ || Exact || Deterministic || [https://www-ncbi-nlm-nih-gov.ezproxy.canberra.edu.au/pubmed/10977095 Time] | |||
|- | |||
| [[Bailey TL; Elkan C MEME (Motif Search Motif Search)|Bailey TL; Elkan C MEME]] || 1995 || $O(n^{2}m^{2})$ || $O(mn)$ || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/article/10.1007/BF00993379 Time] | |||
|- | |||
| [[Sagot M (Motif Search Motif Search)|Sagot M]] || 1988 || $O(n \log(n)$ m^{1.{4}5}) || $O(mn^{2}/w)$ || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/chapter/10.1007/BFb0054337 Time & Space] | |||
|- | |||
| [[Liang Cwinnower (Motif Search Motif Search)|Liang Cwinnower]] || 2003 || $O(nm^{0.5})$ || $O(m^{2})$ || Exact || Deterministic || [https://www.worldscientific.com/doi/10.1142/S0219720004000466 Time] | |||
|- | |||
| [[Kingsford (Motif Search Motif Search)|Kingsford]] || 2006 || $O(mn)$ || $O(m^{2}n^{2})$ || Exact || Deterministic || [https://link-springer-com.ezproxy.canberra.edu.au/chapter/10.1007/11780441_22 Time] | |||
|- | |||
|} | |||
== Time Complexity Graph == | |||
[[File:Motif Search - Time.png|1000px]] |
Latest revision as of 09:11, 28 April 2023
Description
Motif search is the problem of identifying motifs, recurring or conserved patterns, in the strings (typically biological sequence data sets).
Parameters
$n$: size of set of input strings
$m$: size of input strings
$k$: length of substrings
$\sigma$: function $V(k, m)$ defined as the number of $k$-mers that are at most $m$ Hamming distance from the motif space
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Lawrence, Reilly | 1990 | $O(nm)$ | $O(nm)$ | Deterministic | Time & Space | |
Lawrence Gibbs Sampling | 1993 | $O(nm)$ | $O(n + m)$ | Deterministic | Time | |
MotifSampler | 2001 | $O(nm)$ | $O(n + m)$ | Deterministic | Time | |
Speller | 1998 | $O(mn^{2} \sigma)$ | $O(mn^{2}/w)$ | Exact | Deterministic | Time & Space |
Mitra | 2002 | $O(k nm \sigma)$ | $O(mnk)$ | Exact | Deterministic | Time & Space |
Census | 2003 | $O(k nm \sigma)$ | $O(mnk)$ | Exact | Deterministic | Time & Space |
Risotto | 2006 | $O(mn^{2} \sigma)$ | $O(mn^{2})$ | Exact | Deterministic | Time & Space |
PMS | 2007 | $O(nm^{2} \sigma)$ | $O(m^{2} n)$ | Exact | Deterministic | Time & Space |
Roth AlignACE | 1998 | $O(nm)$ | $O(n + m)$ | Deterministic | Time | |
Helden Oligo-Analysis | 1998 | $O(mn)$ | $O(m)$ | Exact | Deterministic | Time |
van Helden J; Rios AF; Collado-Vides J | 2000 | $O(mn)$ | $O(m)$ | Exact | Deterministic | Time |
Tompa M | 1999 | $O(mn)$ | $O(m^{2})$ | Exact | Deterministic | Time |
Sinha S; Tompa M YMF (Yeast Motif Finder) | 2000 | $O(n^{0.{6}6} m)$ | $O(m)$ | Exact | Deterministic | Time |
Bailey TL; Elkan C MEME | 1995 | $O(n^{2}m^{2})$ | $O(mn)$ | Exact | Deterministic | Time |
Sagot M | 1988 | $O(n \log(n)$ m^{1.{4}5}) | $O(mn^{2}/w)$ | Exact | Deterministic | Time & Space |
Liang Cwinnower | 2003 | $O(nm^{0.5})$ | $O(m^{2})$ | Exact | Deterministic | Time |
Kingsford | 2006 | $O(mn)$ | $O(m^{2}n^{2})$ | Exact | Deterministic | Time |
Time Complexity Graph
Error creating thumbnail: Unable to save thumbnail to destination